Аргон

Содержание
  1. Аргон, свойства атома, химические и физические свойства
  2. Атом и молекула аргона. Формула аргона. Строение аргона:
  3. Свойства аргона (таблица): температура, плотность, давление и пр
  4. Применение аргона:
  5. Технические характеристики и применение аргона
  6. Аргон: технические характеристики
  7. Где применяется аргон
  8. Способы получения  аргона
  9. Правила хранения и транспортировки
  10. Получение и применение аргона
  11. Побочный продукт при производстве аммиака
  12. Применение аргона
  13. Аргон – самый ленивый газ
  14. История открытия aргона
  15. Способы получения аргона
  16. Применение аргона в сварке
  17. Вредность и опасность аргона
  18. Хранение и транспортировка аргона
  19. Характеристики аргона
  20. Коэффициенты перевода объема и массы Ar при Т=15°С и Р=0,1 МПа
  21. Коэффициенты перевода объема и массы Ar при Т=0°С и Р=0,1 МПа
  22. Аргон в баллоне
  23. Давление аргона в баллоне при различной температуре окружающей среды
  24. Газ аргон – химические свойства и сфера применения
  25. Химический элемент Ar
  26. Как добывают аргон
  27. Где применяется газ аргон
  28. Меры предосторожности при эксплуатации
  29. Аргон: применение, получение, история
  30. История открытия Аргона
  31. Получение Аргона
  32. Применение Аргона

Аргон, свойства атома, химические и физические свойства

Аргон

Ar 18  Аргон

39,948(1)      1s2 2s2 2p6 3s2 3p6

Аргон — элемент периодической системы химических элементов Д. И. Менделеева с атомным номером 18. Расположен в 18-й группе (по старой классификации — главной подгруппе восьмой группы), третьем периоде периодической системы.

Атом и молекула аргона. Формула аргона. Строение аргона

Изотопы и модификации аргона

Свойства аргона (таблица): температура, плотность, давление и пр.

Физические свойства аргона

Химические свойства аргона. Взаимодействие аргона. Реакции с аргоном

Получение аргона

Применение аргона

Таблица химических элементов Д.И. Менделеева

Атом и молекула аргона. Формула аргона. Строение аргона:

Аргон (лат. Argon, от др.-греч. ἀργός – «ленивый, медленный, неактивный») – химический элемент периодической системы химических элементов Д. И. Менделеева с обозначением Ar и атомным номером 18. Расположен в 18-й группе (по старой классификации — главной подгруппе восьмой группы), третьем периоде периодической системы.

Аргон самый лёгкий элемент периодической таблицы химических элементов Д. И. Менделеева из группы инертных (благородных) газов.

Аргон – химически инертный неметалл. Химически малоактивен.

Как простое вещество аргон (химическая формула Ar) при нормальных условиях представляет собой одноатомный газ без цвета, вкуса и запаха.

Молекула аргона одноатомна.

Химическая формула аргона Ar.

Электронная конфигурация атома аргона 1s2 2s2 2p6 3s2 3p6. Потенциал ионизации атома аргона равен 15,76 эВ (1519,6 кДж/моль).

Строение атома аргона. Атом аргона состоит из положительно заряженного ядра (+18), вокруг которого по трем атомным оболочкам движутся 18 электронов. При этом 10 электронов находятся на внутреннем уровне, а 8 электронов – на внешнем. Поскольку аргон расположен в третьем периоде, оболочки всего три.

Первая – внутренняя оболочка представлена s-орбиталью. Вторая – внутренняя оболочка представлена s- и р-орбиталями. Третья – внешняя оболочка представлена s- и р-орбиталями. Внешний энергетический уровень атома аргона полностью завершен – 8 спаренных электронов. Поэтому аргон химически малоактивен.

В свою очередь ядро атома аргона состоит из 18 протонов и 22 нейтронов. Аргон относится к элементам p-семейства.

Радиус атома аргона составляет 71 пм.

Атомная масса атома аргона составляет 39,948(1) а. е. м.

Аргон – третий по содержанию после азота и кислорода компонент воздуха, его среднестатистическое содержание в атмосфере Земли составляет 0,934 % по объёму и 1,288 % по массе. Аргон – самый распространённый инертный газ в земной атмосфере.

Свойства аргона (таблица): температура, плотность, давление и пр

Общие сведения
НазваниеАргон/ Argon
СимволAr
Номер в таблице18
ТипНеметалл
ОткрытУильям Рамзай, Джон Уильям Стретт (лорд Рэлей), Англия, 1894 г.
Внешний вид и пр.Инертный газ без цвета, вкуса и запаха.
в земной коре0,00015 %
в океане0,000045 %
Свойства атома
Атомная масса (молярная масса)39,948(1) а. е. м. (г/моль)
Электронная конфигурация1s2 2s2 2p6 3s2 3p6
Радиус атома71 пм
Химические свойства
Степени окисления0
Валентность0
Ковалентный радиус106 пм
Радиус Ван-дер-Ваальса
Радиус иона154 пм
Электроотрицательность4,3 (шкала Полинга)
Энергия ионизации (первый электрон)1519,6 кДж/моль (15,76 эВ)
Электродный потенциал0
Физические свойства
Плотность (при  +20 °C и нормальных условиях, состояние вещества – газ)0,0017839 г/см3
Плотность (при  -185,7 °C и нормальных условиях, состояние вещества – жидкость)0,402 г/см3
Плотность (при  -233 °C и нормальных условиях, состояние вещества – твердое тело)1,65 г/см3
Температура плавления-189,35 °C (83,8 К)
Температура кипения-185,85 °C (87,3 К)
Уд. теплота плавления7,05 кДж/моль
Уд. теплота испарения6,45 кДж/моль
Молярная теплоёмкость20,79 Дж/(K·моль)
Молярный объём24,2 см³/моль
Критическая температура-122,5 °C
Критическое давление4,86 МПа
Критическая плотность0,531 г/см3
Давление паров1 мм.рт.ст. (при -219,5°C),10 мм.рт.ст. (при -211,3°C),100 мм.рт.ст. (при -200,1°C)
Стандартная энтальпия образования ΔH (при 298 К, для состояния вещества – газ)0 кДж/моль
Стандартная энергия Гиббса образования ΔG (при 298 К, для состояния вещества – газ)0 кДж/моль
Стандартная энтропия вещества S (при 298 К, для состояния вещества – газ)154,7 Дж/(моль·K)
Теплопроводность (при 300 K)0,0164 Вт/(м·К)
Диэлектрическая проницаемость1,000504 (при 25°C),1,3247 (при -133,2°C)
Электропроводность в твердой фазе
Сверхпроводимость при температуре
Твёрдость
Структура решёткикубическая гранецентрированная
Параметры решётки5,260 Å
Температура Дебая 85 К

Применение аргона:

Таблица химических элементов Д.И. Менделеева

Таблица химических элементов Д.И. Менделеева

Примечание: © Фото https://www.pexels.com, https://pixabay.com

Источник: https://xn--80aaafltebbc3auk2aepkhr3ewjpa.xn--p1ai/argon-svoystva-atoma-himicheskie-i-fizicheskie-svoystva/

Технические характеристики и применение аргона

Аргон

Инертные газы практически не вступают в реакцию с другими веществами, поэтому их нельзя использовать, например, для отопления жилища или производства химических соединений. Несмотря на свой «асоциальный характер» такие элементы получили очень большое распространение в промышленности, благодаря наличию очень интересных физических свойств. Газ аргон относится именно к таким элементам.

Об основных качествах аргона, а также о сферах его применения будет подробно рассказано в этой статье.

Аргон: технические характеристики

Аргон представляет собой бесцветный газ, который не оказывает никакого действия на органы вкуса и обоняния. Этот одноатомный элемент является одним из самых распространённых инертных газообразных веществ на земле.

Аргон был открыт в конце XIX века британским учёным Джоном Стреттом. Исследователь проводил опыты по выделению азота из воздуха.

В результате экспериментов было выяснено, что азот полученный таким образом имеет немного большую плотность, чем в случае, когда для получения этого газа использовались органические вещества.

Учёный предположил, что азот из атмосферы содержит примесь неизвестного на тот момент газообразного вещества. Впоследствии, эти догадки были подтверждены, и аргон был получен в чистом виде и тщательно исследован.

Учёных, которые пытались произвести различные опыты с аргоном, ошеломил тот факт, что этот газ не вступал в реакцию с другими химическими элементами. Таким образом удалось впервые получить благородный газ с подобными характеристиками.

Несмотря на отсутствие соединений аргон, как и другие вещества, обладает физическими свойствами. К наиболее важным характеристикам газа относятся:

  • Плотность: 1,784 кг/м3.
  • Температура кипения: -185,8 ˚С.
  • Тройная точка: -189,8˚С.
  • в воздухе: 0,9% объёма.

Аргон практически не растворяется в воде, а также абсолютно безопасен в плане пожарной активности. Этот газ не ядовит, поэтому при работе с ним не требуется использовать каких-либо средств защиты.

Где применяется аргон

Аргон получил большое распространение в промышленности. Инертные свойства этого газа особенно востребованы в различных производственных процессах, где необходимо вытеснить один из самых активных элементов – кислород.

Использование аргона очень дёшево, в сравнении с другими инертными летучими веществами, поэтому газ незаменим в том случае, когда требуется защитная среда при сваривании металлов, а также вытеснение влаги и кислорода в ёмкостях, где хранятся пищевые продукты.

Наполнение колб ламп  накаливания инертным газом, позволяет значительно увеличить ресурс работы осветительного прибора. Кроме повышенного срока использования такие элементы обладают большей яркостью. Используется инертный газ и при производстве люминесцентных ламп. Применение аргона позволяет облегчить запуск разряда электрической дуги, а также значительно увеличить ресурс электродов.

При изготовлении стеклопакетов, инертным газом заполняются полости между стёклами, что позволяет значительно улучшить теплоизоляционные свойства. Учитывая тот факт, что аргон является абсолютно прозрачным, использование его никак не ограниченно даже при изготовлении многослойных конструкций.

Инертный газ аргон используется также в установках плазменной резки металлов.

Преимущество использования этого газа заключается в том, что для возникновения дуги не требуется слишком высокого напряжения, поэтому такие установки могут иметь очень простую конструкцию.

При генерации плазмы с использованием аргона образуется минимальное количество вредных газообразных веществ во время выполнения резки, поэтому этот метод идеально подходит для ручных приборов.

Благодаря возможности образовывать плазму при относительно невысоком напряжении, этот благородный газ используется в медицине для проведения аргоновой коагуляции. Такой метод успешно используется для удаления новообразований, а также для остановки кровотечений.

Аргон применяется и в химической промышленности. Благодаря отсутствию взаимодействия с другими элементами этот газ используется для получения сверхчистых веществ, а также для их анализа.

В металлургической промышленности благородный газ позволяет обрабатывать такие металлы, как: титан, тантал, ниобий, бериллий, цирконий и др.

Кроме этого, газ используется для перемешивания расплавленных веществ и снижения окисления хрома при производстве хромированной стали.

Способы получения  аргона

Аргон является третьим по распространённости газом в земной атмосфере, поэтому наиболее логичным способом является добывание его из воздуха. Для этой цели используются специальные низкотемпературные ректификационные аппараты.

Процесс отделения инертного вещества осуществляется в такой последовательности:

  • Воздух очищается от пыли и подвергается сжатию до жидкого состояния.
  • Жидкий воздух, состоящий преимущественно из кислорода, азота и аргона подвергается ректификации.
  • После отделения азота, из получившейся при сжатии жидкости, осуществляется доочистка кислородно-аргоновой смеси.

Температура кипения аргона в ректификационной установке составляет минус 185,3˚С. При этом, кислород кипит при температуре на 3 градуса выше, а азот – на 13˚С ниже этого показателя.

По причине небольшого отличия в переходе из одного агрегатного состояния в другое, на первом этапе отделения аргона смесь содержит большое количество жидкого кислорода. На заключительной стадии получения аргона производится отделение благородного газа из кислородно-аргоновой смеси.

Процесс доочистки, как правило, осуществляется с помощью электролитического водорода. В результате реакции в контактном аппарате с кислородом образуется водяной пар, который затем утилизируется через влагоотделитель.

Аргон может быть получен не только из атмосферного воздуха. При некоторых производственных процессах этот газ может являться сопутствующим продуктом. Например, при производстве аммиака, аргон является примесью азота и является совершенно ненужным элементом, поэтому полученный таким образом газ имеет очень низкую себестоимость, в сравнении с криогенным аргоном.

Правила хранения и транспортировки

Хранение и перевозка газа осуществляется в специальных металлических баллонах.

Несмотря на то, что аргон является инертным газом, к ёмкостям всё равно предъявляются определённые технические требования, нарушение которых приведёт к невозможности использовать сосуд в дальнейшем.

Кроме этого, утечка благородного газа в закрытом помещении может вызвать тошноту и потерю сознания у людей, ведь этот газ тяжелее воздуха и способен вытеснить необходимый для дыхания кислород.

Баллоны, используемые для хранения и транспортировки аргона, представляют собой цилиндрические ёмкости, которые могут быть разделены на следующие категории:

  • Малого объёма: 0,4 – 12 л.
  • Среднего объёма: 20 – 50 л.
  • Большого объёма: более 50 л.

Стандартное давление в аргоновом баллоне составляет 150 атм, но в ёмкостях объёмом 40 литров разрешается хранить газ давлением до 200 атм. На ёмкости для хранения аргона наносится информация о дате изготовления и аттестации, а также такие параметры, как вес и объём.

Аргоновые баллоны имеют в верхней части горловины вентиль, с помощью которого можно надёжно перекрыть подачу газа, а также колпак, который защищает запорное устройство от механических повреждений.
Все баллоны, вне зависимости от объёма, окрашиваются в серый цвет и маркируются надписью «Аргон» зелёного цвета.

Транспортировка аргона должна осуществляться по правилам. Автомобили должны маркироваться специальным знаком, которые указывает на перевозку нетоксичных и невзрывоопасных веществ. Все документы оформляются в строгом соответствии с правилами ДОПОГ.

Кроме этого, при перевозке аргона необходимо:

  • Надёжно закрепить баллоны.
  • Размещение ёмкостей осуществляется в горизонтальной плоскости.
  • Возможно вертикальное размещение только при наличии специальных приспособлений, повышающих устойчивость баллонов.
  • Заправленные аргоном баллоны разрешается перевозить только при отсутствии утечек из ёмкости.

При перевозке аргона в количестве до 18 баллонов (объём 40 л) груз не является опасным, поэтому специальное разрешение не требуется. Тем не менее, даже при перемещении небольших партий следует придерживаться вышеописанных правил транспортировки ёмкостей с этим газом.

Источник: https://ballonis.ru/stati/gaz-argon-tehnicheskie-harakteristiki-i-primenenie

Получение и применение аргона

Аргон

Аргон – это простой одноатомный бесцветный, безвкусный газ, не имеющий запаха. Аргон тяжелее воздуха (плотность 1,78 кг/м 3 ), обладает низким потенциалом ионизации (15,7 В), не вступает в химические взаимодействия с другими элементами.

По объему и массе, после азота и кислорода, аргон самый распространенный газ в атмосфере: аргон в достаточных количествах содержится в свободном виде (0,9325% об., или 0,00007% вес.), что позволяет получать его из воздуха ректификационными методами.

Большую часть аргона в современной промышленности получают криогенным способом разделения сжиженного воздуха. При этом происходит разделение его на составляющие газы.

Принцип работы криогенной ректификационной колонны основывается на разнице в температурах кипения газов, составляющих атмосферный воздух. Легкокипящие вещества, такие как гелий и неон, скапливаются в виде пара в верхней части колонны.

Труднокипящие криптон и ксенон остаются в виде жидкости внизу.

Аргон вместе с кислородом и азотом относится к средней фракции, поэтому примерно на уровне одной трети высоты основной колонны располагается патрубок, через который в специальную колонну выводится фракция аргона, содержащая примерно десять – двенадцать процентов этого газа. Здесь производится повторная ректификация. Азот, как более летучее вещество уходит вверх колонны, а более «тяжелый» кислород опускается вниз.

После частичного отделения кислорода и азота, остается смесь, содержание аргона в которой колеблется от 85% до 94%. Такой «сырой» аргон подлежит доочистке. Примеси азота удаляются ректификацией. А три – десять процентов кислорода убираются адсорбцией или химическим способом. В результате чистота полученного аргона достигает 99,99%.

Побочный продукт при производстве аммиака

Еще один источник получения аргона – это аммиачное производство. В данном случае газообразный аргон является отходом – примесью, извлекаемой из азота, который необходим для синтеза аммиака. После взаимодействия азота и водорода с образованием аммиака, аргон просто остается как не прореагировавший остаток.

Применение аргона

Аргон широко используют для создания инертной и защитной атмосферы, прежде всего при термической обработке легко окисляющихся металлов (аргоновая плавка, аргоновая сварка и другие). В атмосфере аргона получают кристаллы полупроводников и многие другие сверхчистые материалы.

Аргоном часто заполняют электрические лампочки (для замедления испарения вольфрама (W) со спирали). При пропускании электрического разряда через стеклянную трубку, заполненную аргоном, наблюдается сине-голубое свечение, что широко используется, например, в светящейся рекламе.

В геохронологии по определению соотношения изотопов 40Ar/40К устанавливают возраст минералов.

Аргон успешно применяется в пищевой промышленности как упаковочный газ, в качестве вещества для тушения пожаров, в медицине для очистки воздуха и в качестве наркоза и в аргоновых лазерах.

Однако наибольшее и наилучшее применение этот газ получил в сварочных работах.

Сварка в защитных газах (аргон или многокомпонентные газовые смеси на основе аргона) применяется практически для всех металлов, включая углеродистую сталь, алюминий, медь, нержавейку и титан.

  • Подавляющее большинство ламп накаливания заполняют смесью аргона (86%) и азота (14%).
  • Используется аргон и в современных люминесцентных лампах для облегчения зажигания, лучшей передачи тока и предохранения катодов от разрушения.
  • Аргон – упаковочный газ.
  • Аргон незаменим при хранении овощей.
  • Аргон при определенных условиях способен замедлять метаболические реакции и значительно сокращать газообмен.
  • Аргон является зарегистрированной пищевой добавкой E938.
  • Заполнение стеклопакетов аргоном обеспечивает превосходную тепловую изоляцию.
В последние десятилетия наибольшая часть получаемого аргона идет в металлургию, металлообработку. В среде аргона ведут процессы, при которых нужно исключить контакт расплавленного металла с кислородом, азотом, углекислотой и влагой воздуха. Аргонная среда используется при горячей обработке титана, тантала, ниобия, бериллия, циркония, гафния, вольфрама, урана, тория, а также щелочных металлов. В атмосфере аргона обрабатывают плутоний, получают некоторые соединения хрома, титана, ванадия и других элементов (сильные восстановители).Аргон используется для предупреждения контакта и последующего взаимодействия между расплавленным металлом и окружающей атмосферой.Использование аргона позволяет оптимизировать такие производственные процессы, как перемешивание расплавленных веществ, продувка поддонов реакторов для предупреждения повторного окисления стали и обработка стали узкого применения в вакуумных дегазаторах, включая вакуумно-кислородное обезуглероживание, окислительно-восстановительных процессы и процессы открытого сжигания. Однако наибольшую популярность аргон приобрел в процессах аргоно-кислородного обезуглероживания нерафинированной высокохромистой стали, позволяя минимизировать окисление хрома.
  • В чистом виде и в соединениях с другими газами аргон используется для проведения промышленных и медицинских анализов и испытаний в рамках контроля качества.
  • В частности, аргон выполняет функцию газовой плазмы в эмиссионной спектрометрии индуктивно-связанной плазмой (ICP), газовой подушки в атомно-абсорбционной спектроскопии в графитной печи (GFAAS) и газа-носителя в газовой хроматографии с использованием различных газоанализаторов.
  • В соединении с метаном аргон используется в счетчиках Гейгера и детекторах рентгеновского флуоресцентного анализа (XRF), где он выполняет функцию гасящего газа.
  • В аргоновых лазерах.
Все шире применяется дуговая электросварка в среде аргона. Продуваемый вдоль столба дуги аргон (в смеси с водородом) предохраняет кромки разреза и вольфрамовый электрод от образования окисных, нитридных и иных пленок. Одновременно он сжимает и концентрирует дугу на малой поверхности, отчего температура в зоне резки достигает 4000-6000°С. К тому же эта газовая струя выдувает продукты резки. При сварке в аргонной струе нет надобности во флюсах и электродных покрытиях, а стало быть, и в зачистке шва от шлака и остатков флюса.Аргон используется в качестве защитной среды в процессах дуговой сварки, при поддуве защитного газа и при плазменной резке.
Сверхчистый аргон служит в качестве газа-носителя для химически активных молекул, а также в качестве инертного газа для защиты полупроводников от посторонних примесей (например, аргон обеспечивает необходимую среду для выращивания кристаллов силикона и германия).В ионном состоянии аргон используется в процессах металлизации напылением, ионной имплантации, нормализации и травления при производстве полупроводников и высокоэффективном производстве материалов.
  • Аргон применяют для наполнения подушек безопасности в автомобилях.
  • Очистка воздуха в операционных.
  • Приготовление наркоза.
  • Аргоноплазменная коагуляция.
  • Аргон используется в качестве огнетушащего вещества в газовых противопожарных установках.

Источник: https://airtechnik.ru/blog/poluchenie-i-primenenie-argona/

Аргон – самый ленивый газ

Аргон
Аргон химический элемент периодической системы Д. И. Менделеева, инертный газ, атомный номер 18, атомная масса 39,948. Объемная концентрация аргона в воздухе 0,9325% об. или 1,2862% вес. Аргон тяжелее воздуха, плотность 1,78 кг/м3 при нулевой температуре и нормальном давлении. Температура кипения -185,85°C. Обладает низким потенциалом ионизации 15,7 В.

С большинством элементов аргон не образует химических соединений, кроме некоторых гидридов. В металлах аргон, как в жидком, так и в твердом состоянии нерастворим. При обычных условиях – бесцветный, негорючий, неядовитый газ, без запаха и вкуса. Химическая формула – Ar.

На данный момент известны изотопы аргона с массовыми числами от 29 до 54, но в в земной атмосфере он представлен тремя стабильными изотопами:

  • 40Ar (изотопная распространённость 99,600 %)
  • 36Ar (изотопная распространённость 0,337 %)
  • 38Ar (изотопная распространённость 0,063 %)

История открытия aргона

Аргон был открыт Джоном Уильямом Стреттом (John Strutt) и Сэром Уильямом Рамзаем (Sir William Ramsay) при исследовании азота, полученного из воздуха химическим путем.

Несовпадение плотности этого газа при различных способах получения натолкнуло этих ученых на идею о присутствии в воздухе какого-то тяжелого инертного газа, который и был выделен ими в 1894 г.

и назван argon, что с греческого переводится как «ленивый», «медлительный», «неактивный».

Способы получения аргона

Аргон получают как побочный продукт, при производстве кислорода и азота из воздуха методом низкотемпературной ректификации (см. получение аргона)

Применение аргона в сварке

Аргон применяют в качестве защитной среды при сварке активных и редких металлов (титана, циркония и ниобия) и сплавов на их основе, алюминиевых и магниевых сплавов, а также хромоникелевых коррозионностойких жаропрочных сплавов, легированных сталей различных марок.

Для сварки черных металлов аргон обычно используются в смеси с другими газами – кислородом, гелием, двуокисью углерода или водородом.

Аргон, являясь более тяжелым, чем воздух, своей струей лучше защищает металл при сварке в нижнем положении. Растекаясь по поверхности свариваемого изделия, он защищает достаточно длительно довольно широкую и протяженную зону как расплавленного, так и нагретого при сварке металла.

Низкий ионизационный потенциал аргона помогает получить превосходный профиль сварочного шва и сохранять хорошую и устойчивую дугу от начала до конца. В тоже время, низкий потенциал ионизации является причиной и низкого напряжения на дуге, что снижает тепловую мощность дуги. Для более подробной информации рекомендуем статью о свойствах сварочной дуги в инертных газах – аргоне и гелии.

Применение аргона позволяет повысить температуру сварочной дуги, что улучшает проплавление сварного шва, увеличивая производительность сварки в целом.

При этом проплавление приобретает «кинжальную» форму, что дает возможность выполнять однопроходную сварку в щелевую разделку металла больших толщин.

При сварке в среде аргона (как и иных инертных газов) минимизируется выгорание активных легирующих элементов, что позволяет использовать более дешевые сварочные проволоки.

При TIG сварке аргон служит защитой не только для сварочной ванны от вредного воздействия воздуха, а также инертной защитой конца электрода.

Для дуговой сварки в целом аргон применяется гораздо чаще, чем гелий, однако при сварке листового алюминия толщиной менее 6 мм аргон рекомендуют смешивать с гелием, чтобы обеспечить нужную теплопроводность.

В некоторых случаях аргонно-гелиевые смеси используют для зажигания дуги, после чего сварка происходит в присутствии гелия. Этот метод применяется для сварки толстолистового алюминия вольфрамовым электродом при постоянном токе.

Вредность и опасность аргона

Аргон не оказывает опасного воздействия на окружающую среду, но относится к асфиксантам (удушающий газ).

Поскольку газообразный аргон тяжелее воздуха он может накапливаться в слабо проветриваемых помещениях у пола.

При этом снижается содержание кислорода в воздухе, что вызывает кислородную недостаточность и удушье. Поэтому можно сделать вывод, что в больших количествах аргон вреден для организма человека.

Жидкий аргон – низкокипящая жидкость, которая может вызвать обморожение кожи и поражение слизистой оболочки глаз человека.

Хранение и транспортировка аргона

Газообразный и жидкий аргон поставляется по ГОСТ 10157. Хранят и транспортируют газообразный аргон в баллонах по ГОСТ 949 под давлением 15МПа.

Стальные баллоны должны соответствовать ГОСТ 949. Баллон окрашивается в серый цвет с зеленой полосой и зеленой надписью «АРГОН ЧИСТЫЙ».

Возможна транспортировка аргона в жидком виде в специальных цистернах или сосудах Дьюара с последующей его газификацией.

Характеристики аргона

Характеристики Ar представлены в таблицах ниже:

Коэффициенты перевода объема и массы Ar при Т=15°С и Р=0,1 МПа

Масса, кг ОбъемГаз, м3Жидкость, л
1,66911,197
1,3940,8351
10,5990,717

Коэффициенты перевода объема и массы Ar при Т=0°С и Р=0,1 МПа

Масса, кг ОбъемГаз, м3Жидкость, л
1,78411,279
1,3940,7821
10,5610,717

Аргон в баллоне

Наименование Объем баллона, лМасса газа в баллоне, кгОбъем газа (м3) при Т=15°С, Р=0,1 МПа
Ar4010,856,5

Благодаря этой таблице теперь можно легко дать ответы на вопросы, которые очень часто задают сварщики:

  • Сколько литров в баллоне аргона? Ответ: 40 литров
  • Сколько аргона в баллоне 40л? Ответ: 6,5 м3 или 10,85 кг
  • Сколько весит баллон с аргоном 40 литров Ответ: 58,5 кг – масса пустого баллона из углеродистой стали согласно ГОСТ 949; 10,85 – кг масса аргона в баллоне;Итого: 58,5 + 10,85 = 69,35 кг вес баллона с аргоном.

Давление аргона в баллоне при различной температуре окружающей среды

Температура окружающей среды Давление в баллоне, МПа
-4010,5
-3011,3
-2012,2
-1012,9
013,7
+1014,6
+2015,3
+3016,0

Источник: https://weldering.com/argon-samyy-lenivyy-gaz

Газ аргон – химические свойства и сфера применения

Аргон

В переводе с греческого «argon» означает «медленный» или «неактивный». Такое определение газ аргон получил благодаря своим инертным свойствам, позволяющим широко его использовать во многих промышленных и бытовых целях.

Химический элемент Ar

Ar – 18-й элемент периодической таблицы Менделеева, относящийся к благородным инертным газам. Данное вещество является третьим после N (азота) и O (кислорода) по содержанию в атмосфере Земли. В обычных условиях – бесцветен, не горюч, не ядовит, без вкуса и запаха.

Другие свойства газа аргона:

  • атомная масса: 39,95;
  • содержание в воздухе: 0,9% объема и 1,3% массы;
  • плотность в нормальных условиях: 1,78 кг/м³;
  • температура кипения: -186°С.

На рисунке название химического элемента и его свойства

Данный элемент был открыт Джоном Стреттом и Уильямом Рамзаем при исследовании состава воздуха. Несовпадение плотности при различных химических испытаниях натолкнуло ученых на мысль, что в атмосфере помимо азота и кислорода присутствует инертный тяжелый газ. В итоге в 1894 г. было сделано заявление об открытии химического элемента, доля которого в каждом кубометре воздуха составляет 15 г.

Как добывают аргон

Ar не поддается изменениям в процессе его использования и всегда возвращается в атмосферу. Поэтому ученые считают данный источник неисчерпаемым. Он добывается как сопутствующий продукт при разделении воздуха на кислород и азот посредством низкотемпературной ректификации.

Для реализации этого метода применяются специальные воздухоразделительные аппараты, состоящие из колонн высокого, низкого давления и конденсатора-испарителя.

В результате процесса ректификации (разделения) получается аргон с небольшими примесями (3-10%) азота и кислорода. Чтобы произвести очистку, примеси убираются с помощью дополнительных химических реакций.

Современные технологии позволяют достичь 99,99% чистоты данного продукта.

Представлены установки по производству данного химического элемента

Хранится и транспортируется газ аргон в стальных баллонах (ГОСТ 949-73), которые имеют серый окрас с полосой и соответствующей надписью зеленого цвета.

При этом процесс наполнения емкости должен полностью соответствовать технологическим нормам и правилам безопасности.

Детальную информацию о специфике заполнения газовых баллонов можно прочитать в статье: баллоны со сварочной смесью – технические особенности и правила эксплуатации.

Где применяется газ аргон

Данный элемент имеет достаточно большую сферу применения. Ниже приведены основные области его использования:

  1. заполнение внутренней полости ламп накаливания и стеклопакетов;
  2. вытеснение влаги и кислорода для долгого хранения пищевых продуктов;
  3. огнетушащее вещество в некоторых системах тушения пожара;
  4. защитная среда при сварочном процессе;
  5. плазмообразующий газ для плазменной сварки и резки.

В сварочном производстве он применяется как защитная среда в процессе сварки редких металлов (ниобия, титана, циркония) и их сплавов, легированный сталей разных марок, а также алюминиевых, магниевых и хромоникелевых сплавов. Для черных металлов, как правило, применяют смесь Ar с другими газами – гелием, кислородом, углекислотой и водородом.

Вид защитной среды при сварочном процессе, которую создает аргон

Являясь тяжелее воздуха, аргоновая струя надежно защищает металл во время сварки. Инертный газ на протяжении длительного времени является защитой для расплавленной и нагретой металлической поверхности. Больше о сварочном процессе с применением аргоновой защитной среды читайте в статье: сварка аргоном – технология и режимы работы оборудования.

Меры предосторожности при эксплуатации

Данный химический элемент не представляет абсолютно никакой опасности для окружающей среды, но при большой концентрации оказывает удушающее воздействие на человека.

Он нередко скапливается в районе пола в недостаточно проветриваемых помещениях, а при значительном уменьшении содержание кислорода может привести к потере сознания и даже смертельному исходу.

Поэтому важно следить за концентрацией кислорода в закрытом помещении, которая не должна падать ниже 19%.

Еще мы советуем посмотреть третью часть обучения сварке в защитной среде аргона:

Жидкий Ar способен вызвать обморожение участков кожи и повредить слизистую оболочку глаз, поэтому в процессе работы важно использовать спецодежду и защитные очки. При работе в атмосфере этого газа с целью предотвращения удушения необходимо применять изолирующий кислородный прибор или шланговый противогаз.

Заправить баллоны аргоном можно в компании «Промтехгаз», где соблюдается правильная технология заправки и предоставляется качественное обслуживание.

Если вы интересуетесь другими техническими газами, информацию можете найти здесь.

Источник: http://xn--80affkvlgiu5a.xn--p1ai/gaz-argon-himicheskie-svojstva/

Аргон: применение, получение, история

Аргон
Аналитические линии плазмообразующего газа (аргона) на фрагменте спектра образца углеродистой низколегированной стали

Аргон – элемент с атомной массой 39,944 и порядковым номером 18. Принадлежит к 8-ой группе главной подгруппы таблицы Менделеева, относится к благородным инертным одноатомным газам. Не обладает ни запахом, ни цветом, ни вкусом. Негорючий и невзрывоопасный.

История открытия Аргона

Впервые неизвестный до этого газ, при химических и физических экспериментах, обнаружил в 1785 году Генри Кавендиш — английский физик и химик. Но он не смог разгадать загадку и прекратил исследования. Позднее на записи Кавендиша обратил внимание Джеймс Максвелл.

И лишь спустя более ста лет, в 1894 году, химик Уильям Рамзай и физик Джон Уильям Стретт (Лорд Рэлей) сделали доклад об открытии нового элемента, который, за свою химическую неактивность, назвали аргоном.

Это случилось в Оксфорде на собрании Британской ассоциации естествоиспытателей, физиков и химиков. Название нового газа произошло от греческого слова ἀργός, что в переводе означает — неактивный, медленный.

Спустя еще 10 лет, эти ученые получили Нобелевские премии за исследования газов, открытие аргона и других инертных газов в атмосфере.

Получение Аргона

Аргон — наиболее распространенный в воздухе инертный газ. В 1 м3 содержится примерно 0,09 см3 ксенона, 1,1 см3 криптона, 5,2 см3 гелия, 18,2 см3 неона, 9000 см3 аргона.

В атмосфере Земли аргон занимает третье место. На первом – азот, на втором – кислород. В процентном отношении это примерно 0,93% по объёму или 1.3% по массе. По этой причине он является самым легкодоступным и недорогим инертным газом.

Получение и промышленное производство этого газа происходит как выделение сопутствующего газа при добыче азота и кислорода из атмосферного воздуха. Наиболее простой метод — это глубокое охлаждение и ректификация с последующей доочисткой от примесей.

Кроме того, аргон получают при производстве аммиака. Доочистку аргона осуществляют по технологии гидрирования с платиновым катализатором или адсорбционным методом с использованием молекулярных сит или активного угля.

Применение Аргона

Основными потребителями аргона являются:

Металлургия. Применение аргона в современных технологических процессах выплавки стали — продувка расплава в ковше.

Эта операция выполняет несколько функций: охлаждение металла, ускорение плавления вводимых в ковш лигатур и раскислителей, гомогенизация металла по химическому составу и температуре, очищение от неметаллических включений, образующихся от раскисляющих и легирующих добавок, углеродное раскисление металла и его обезуглероживание, удаление водорода и азота, ускорение десульфурации (удаление серы из расплава), вдувание раскисляющих и легирующих порошкообразных добавок.

В металлургии высококачественных сплавов аргон используется для защиты расплава от контакта с воздухом во время выплавки и разливки. Высокотемпературная обработка титана и его сплавов требует защитной аргоновой атмосферы. Незаменим аргон и в технологиях обработки таких редких металлов как цирконий, вольфрам, тантал, ниобий, бериллий, гафний и др.

Металлообрабатывающая промышленность. Основное использование аргона — создание защитной завесы при электродуговой (АРДЭС), контактной и лазерной сварке, термообработке. Аргон — плазмообразующий газ в установках сварки и резки активных, редких металлов, сплавов на их основе, например, алюминиевых и магниевых, нержавеющих, хромоникелевых, жаропрочных сплавов и легированных сталей.

Радиоэлектронная промышленность. Здесь аргон незаменим для создания инертной среды в установках плазменного напыления, заполнение колб электрических и люминесцентных ламп, электровакуумных приборов, газосветной рекламы. Например, сине-голубое свечение получается при заполнении трубок аргоном с парами ртути.

Пищевая промышленность. Благодаря своей химической нейтральности, аргон широко используют как пропеллтен («выталкивающий» газ) в аэрозольных упаковках, антифламинг (вещество снижающее образование пены) и «упаковочный» газ в пищевой промышленности.

Спектральный анализ и метрология. В данной сфере аргон наиболее часто используется как газ-носитель, инертная среда и плазмообразующий газ в контрольно-измерительных приборах, а также при производстве поверочных газовых смесей (ПГС) для различных газоанализаторов.

В данной сфере применения чистота аргона имеет ключевое значение.

Даже при минимальных отклонениях качества аргона от соответствующих ГОСТов и ТУ, регламентированных для использования в конкретных приборах, изменяются условия работы и анализа, что приводит к серьезным искажениям результатов измерений, нарушению работоспособности оборудования, снижению качества продукции, снижению ресурса фильтров и, как следствие, серьезным экономическим убыткам.

Для предотвращения вышеописанного, могут использоваться специализированные фильтры, а также установки доочистки аргона (инертных газов) лабораторного или промышленного назначения.

Так как наша компания занимается разработкой и производством спектрометров, применение аргона в этих приборах мы решили рассмотреть более подробно. Ниже в статье этому будет посвящена отдельная глава.

Прочие сферы применения. Огнетушительные установки, заполнение стеклопакетов и поддув сухих гидрокостюмов водолазов для лучшей теплоизоляции, в медицине — очистка разрезов при хирургическом вмешательстве, в химической промышленности — инертная среда для нестабильных на воздухе соединений, а так же в прочих областях промышленности.

Продолжение >

Источник: https://www.iskroline.ru/articles/argon/

Ваш педагог
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: