Диэлектрики

Диэлектрики: что это такое, примеры

Диэлектрики

Определение 1

Диэлектриками называют вещества, не обладающие способностью проводить электрический ток.

Стоит отметить, что данное определение лишь приблизительно выражает физический смысл приведенного понятия.

Абсолютных изоляторов, то есть веществ, которые совсем не проводят ток, в природе не существует. Диэлектрики по сравнению с проводниками в 1015−1020 раз хуже проводят ток. Данный факт основывается на том, что в диэлектриках отсутствуют свободные заряды.

Что такое диэлектрики и их примеры

Определение 2

Если диэлектрик поместить в электрическое поле, то, как диэлектрик, так и само поле значительно изменятся.

В диэлектриках, в которых до контакта с полем не было заряда, возникают электрические заряды.

Это явление объясняется процессом поляризации вещества, другими словами, в поле диэлектрик обретает электрические полюсы. Возникающие при этом заряды называются поляризационными.

Разделить такие заряды невозможно, чем они существенно отличаются от индукционных зарядов в проводниках.

Данное отличие основывается на том факте, что в металлах присутствуют электроны, имеющие возможность перемещаться на относительно большие расстояния.

В диэлектриках положительные и отрицательные заряды связаны между собой, и их перемещение ограничено пределами одной молекулы, что является крайне малым расстоянием.

Диэлектрики состоят либо из нейтральных молекул, либо из закрепленных в положении равновесия, к примеру, в узлах кристаллической решетки заряженных ионов. Ионные кристаллические решетки могут быть разбиты на, в целом, нейтральные «элементарные ячейки».

Действие электрического поля на заряды, принадлежащие диэлектрику, провоцирует лишь легкое смещение относительно изначального положения, тогда как заряды проводников, испытывающие такое же влияние, срываются с места.

В условиях отсутствующего электрического поля диэлектрик может быть условно представлен в виде совокупности молекул, в каждой из которых положительные и отрицательные заряды равные по величине распределены по всему объему вещества.

Определение 3

В процессе поляризации заряды каждой отдельной молекулы диэлектрика смещаются в противоположные ее стороны. Соответственно, одна часть молекулы становиться положительно заряженной, а другой – отрицательно, что, в общем, дает возможность заявить: молекула превращается в электрический диполь.

Равнодействующая электрических сил, в однородном поле оказывающих влияние на нейтральную молекулу диэлектрика, эквивалентна нулю. Этот факт основывается на том, что центр тяжести молекулы не передвигается ни в одну из сторон. Молекула просто претерпевает деформирование.

Определение 4

Существуют такие диэлектрики, в которых в условиях отсутствующего электрического поля молекулы имеют дипольный момент (полярные молекулы).

В случае, когда поле отсутствует, такие молекулы, принимающие непосредственное участие в тепловом движении, ориентированы беспорядочно. Если же диэлектрик находится в поле, молекулы, в основном, ориентируются по его направлению. Соответственно, диэлектрик проходит процесс поляризации.

Определение 5

У симметричных молекул, таких как, к примеру, O2, N2, в отсутствие поля центры тяжести отрицательных и положительных зарядов одинаковы.

По этой причине собственного дипольного момента у молекул нет (неполярные молекулы).

У несимметричных же молекул (возьмем в качестве примера H2O, CO) центры тяжести сдвинуты друг относительно друга, в результате чего молекулы имеют дипольный момент и носят название полярных.

Также существуют диэлектрические или же ионные кристаллы, которые формируются при помощи ионов с противоположным знаком. Такой кристалл состоит из пары “вдвинутых” друг в друга кристаллических решеток, одна из которых является положительной, а вторая – отрицательной.

В целом кристалл условно можно принять за подобие гигантской молекулы. Процесс наложения электрического поля провоцирует сдвиг одной решеток относительно друг друга, вследствие чего и происходит поляризация ионных кристаллов. Существует также тип поляризованных без участия поля кристаллов.

При дальнейшем исследовании поведения диэлектриков в электрических полях механизм возникновения поляризации значения иметь не будет. Существенным фактом является только то, что поляризация диэлектрика происходит через появление некомпенсированных макроскопических зарядов.

Значения объемной плотность зарядов (ρ) и поверхностной плотности (σ) неполяризованного диэлектрика равняются нулю. После же процесса поляризации σ≠0, а в некоторых случаях и ρ≠0. Поляризация приводит к появлению в тонком поверхностном слое диэлектрика избытка связанных зарядов с одним знаком.

В том случае, если ортогональная или же перпендикулярная часть напряженности поля En→≠0 на приведенном участке, то в результате влияния поля заряды с одним знаком уходят внутрь, а с другим, наоборот, выходят наружу.

Вектор поляризации диэлектрика

Определение 6

Поляризованность P→ или, другими словами, вектор поляризованности характеризует степень поляризации диэлектрика:

P→=∆ρ→∆V,

где ∆ρ представляет собой дипольный момент элемента диэлектрика.

Определение 7

В условиях неполярных молекул вектор поляризованности может быть определен в следующем виде:

P→=1∆V∑∆Vρi→=Nρ0→,

где сложение идет относительно всех молекул в объеме △V. N – концентрация молекул,
ρ0→ является индуцированным дипольным моментом (Он один и тот же у всех молекул). ρ0→↑↑E→.

Определение 8

Формула поляризованности в условиях полярных молекул принимает вид следующего выражения:

P→=1∆V∑∆Vρi→=Np→,

в котором P→ представляет собой среднее значение дипольных моментов, которые равнозначны по модулю, но обладают разными направлениями.

Опиши задание

В изотропных диэлектриках средние дипольные моменты по направлению идентичны напряженности внешнего электрического поля. У диэлектриков с молекулами полярного типа, вклад в поляризованность от наведенных зарядов значительно ниже вклада от переориентации поля.

Определение 9

Ионная решеточная поляризации может быть описана следующей формулой: P→=1∆V∑∆Vρi→=Np→.

В большей части случаев подобная поляризация является анизотропной.

Пример 1

Если представить плоский конденсатор, который заполнен диэлектриком так, как это проиллюстрировано на рисунке 1, то на принадлежащей ему левой обкладке расположен положительный заряд, а на правой – отрицательный.

По причине того факта, что разноименные заряды притягиваются друг к другу, у положительной обкладки на поверхности диэлектрика появится отрицательный заряд, а у правой, то есть отрицательной – положительный заряд диэлектрика.

Выходит, что поле, формирующееся поляризационными зарядами, имеет противоположное направлению поля направление, которое создают обкладки, соответственно, диэлектрик ослабляет поле.

Рисунок 1

+q,−q представляют собой заряды на обкладках конденсатора.

E→ является напряженностью поля, которое формируется обкладками конденсатора.

−q′, +q′- это заряды диэлектрика.

E→' – напряженность поля, которое создается как результат поляризации диэлектрика.

Явление влияния вещества на магнитное и электрическое поля было эмпирическим путем открыто Фарадеем. Именно этим ученым было в науку были введены такие термины, как диэлектрик и диэлектрическая постоянная.

Теорема 1

В случае если однородный изотропный диэлектрик полностью заполняет собой объем, ограниченный эквипотенциальными поверхностями поля сторонних зарядов, то напряженность поля внутри него в ε раз меньше напряженности поля сторонних зарядов.

E→'=E→ε,

где ε определяет диэлектрическую проницаемость среды.

Напряженность поля точечного заряда, который расположен в диэлектрике с некоторой диэлектрической проницаемостью ε, может быть выражена в виде следующего выражения:

E→=14πεε0qr3r→.

Закон Кулона для зарядов, находящихся в жидком и газообразном диэлектрике принимает такой вид:

F→=14πεε0q1q2r3r→.

Пример 2

Задание: Бесконечную плоскую пластину из однородного изотропного диэлектрика разместили в однородном электростатическом поле с напряженностью E=200 Вм, направленной под прямым углом силовым линиям поля. Диэлектрическая проницаемость диэлектрика равняется 2. Какова напряженность поля внутри диэлектрика?

Решение

Поле в вакууме в ε раз сильнее, чем поле в диэлектрике, по этой причине запишем, что:

E→'=E→ε.

Произведем некоторые расчеты:

E→'=2002=100 Вм.

Ответ: Напряженность поля в пластине будет 100 Вм.

Пример 3

Задание: Заряженные шарики обладают массойm1=m2=m. Они подвешены на нитях, имеющих одинаковые значения длины, в одной точке, их заряды эквивалентны q1 и q2( смотри рисунок 1).

Изначально они располагаются в воздухе (диэлектрическая проницаемость ε1), после этого погружаются в жидкость ε2.

Каково отношение диэлектрических проницаемостей ε2ε1, если при погружении в жидкость системы из шариков угол расхождения нитей не претерпел изменений? Отношение плотности шариков к плотности диэлектрика ρshρd=b.

Решение

Рисунки 2 и 3

Запишем условие равновесия шарика в симметричной системе в воздухе:

Fe1→+mg→+N1→=0.

Теперь выразим условие равновесия одного шарика в жидкости:

Fe2→+mg→+N2→+FA→=0.

Запишем проекции уравнения Fe1→+mg→+N1→=0 на оси:

Ох: Fe1-N1sina2=0,

Oy: mg-N1cosα2=0.

Проекции уравнения Fe2→+mg→+N2→+FA→=0 на оси:

Ох: Fe2-N2sinα2=0,

Oy: mg-N2cosα2-FA=0.

Берем отношение уравнения Fe1-N1sina2=0 и mg-N1cosa2=0, в качестве результата получаем:

tga2=Fe1mg.

Уравнение Fe2-N2sina2=0 на уравнение mg-N2cosa2-FA=0, получаем:

tga2=Fe2mg-FA→Fe1mg=Fe2mg-FA.

Основываясь на законе Кулона, запишем такое выражения для Fe1, Fe2:

Fe1=q1q24πε1ε0r2 и Fe2=q1q24πε2ε0r2.

Модуль силы Архимеда равняется следующему выражению:

FA=ρdVg=ρdmρshg.

Подставим в уравнение tga2=Fe2mg-FA→Fe1mg=Fe2mg-FA уравнения  Fe1=q1q24πε1ε0r2 и

Fe2=q1q24πε2ε0r2, в результате получим:

q1q24πε1ε0r2mg=q1q24πε2ε0r2mg-ρdmρshg→1ε11=1ε21-ρdρsh→ε2ε1=11-ρdρsh=11-b.

Ответ: Диэлектрическая проницаемость жидкости должна быть ε2e1=11-b.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Не получается написать работу самому?

Доверь это кандидату наук!

Источник: https://Zaochnik.com/spravochnik/fizika/elektricheskoe-pole/dielektriki/

ДИЭЛЕ́КТРИКИ

Диэлектрики

Авторы: А. П. Леванюк, Д. Г. Санников

ДИЭЛЕ́КТРИКИ, ве­ще­ст­ва, пло­хо про­во­дя­щие элек­трич. ток. Тер­мин «Д.» вве­дён М. Фа­ра­де­ем для обо­зна­че­ния ве­ществ, в ко­то­рые про­ни­ка­ет элек­тро­ста­тич. по­ле. При по­ме­ще­нии в элек­трич. по­ле лю­бо­го ве­ще­ст­ва элек­тро­ны и атом­ные яд­ра ис­пы­ты­ва­ют си­лы со сто­ро­ны это­го по­ля.

В ре­зуль­та­те часть за­ря­дов на­прав­лен­но пе­ре­ме­ща­ет­ся, соз­да­вая элек­трич. ток. Ос­таль­ные же за­ря­ды пе­ре­рас­пре­де­ля­ют­ся так, что «цен­тры тя­же­сти» по­ло­жи­тель­ных и от­ри­ца­тель­ных за­ря­дов сме­ща­ют­ся от­но­си­тель­но друг дру­га. В по­след­нем слу­чае го­во­рят о по­ля­ри­за­ции ве­ще­ст­ва.

В за­ви­си­мо­сти от то­го, ка­кой из этих двух про­цес­сов (по­ля­ри­за­ция или элек­трич. про­во­ди­мость) пре­об­ла­да­ет, ве­ще­ст­ва де­лят на Д. (все не­ио­ни­зо­ван­ные га­зы, не­ко­то­рые жид­ко­сти и твёр­дые те­ла) и про­вод­ни­ки (ме­тал­лы, элек­тро­ли­ты, плаз­ма). Элек­трич. про­во­ди­мость Д. по срав­не­нию с ме­тал­ла­ми очень ма­ла.

Удель­ное элек­трич. со­про­тив­ле­ние Д. 108–1017 Ом·см, ме­тал­лов – 10–6–10–4 Ом·см.

Ко­ли­че­ст­вен­ное раз­ли­чие в элек­трич. про­во­ди­мо­сти Д. и ме­тал­лов клас­сич. фи­зи­ка пы­та­лась объ­яс­нить тем, что в ме­тал­лах есть сво­бод­ные элек­тро­ны, в то вре­мя как в Д. все элек­тро­ны свя­за­ны (при­над­ле­жат отд. ато­мам) и элек­трич. по­ле не от­ры­ва­ет, а лишь слег­ка сме­ща­ет их.

Кван­то­вая тео­рия твёр­до­го те­ла объ­яс­ня­ет раз­ли­чие элек­трич. свойств ме­тал­лов и Д. разл. рас­пре­де­ле­ни­ем элек­тро­нов по энер­ге­тич. уров­ням. В Д. верх­ний за­пол­нен­ный элек­тро­на­ми энер­ге­тич.

уро­вень сов­па­да­ет с верх­ней гра­ни­цей од­ной из раз­ре­шён­ных зон (в ме­тал­лах он ле­жит внут­ри раз­ре­шён­ной зо­ны), а бли­жай­шие сво­бод­ные уров­ни от­де­ле­ны от за­пол­нен­ных за­пре­щён­ной зо­ной, пре­одо­леть ко­то­рую под дей­ст­ви­ем не слиш­ком силь­ных элек­трич. по­лей элек­тро­ны не мо­гут (см. Зон­ная тео­рия).

Дей­ст­вие элек­трич. по­ля сво­дит­ся к пе­ре­рас­пре­де­ле­нию элек­трон­ной плот­но­сти, ко­то­рое при­во­дит к по­ля­ри­за­ции ди­элек­три­ка.

Поляризация диэлектриков

Ме­ха­низ­мы по­ля­ри­за­ции Д. за­ви­сят от ха­рак­те­ра хи­мич. свя­зи, т. е. рас­пре­де­ле­ния элек­трон­ной плот­но­сти в Д. В ион­ных кри­стал­лах (напр.

, NaCl) по­ля­ри­за­ция яв­ля­ет­ся ре­зуль­та­том сдви­га ио­нов от­но­си­тель­но друг дру­га (ион­ная по­ля­ри­за­ция), а так­же де­фор­ма­ции элек­трон­ных обо­ло­чек отд. ио­нов (элек­трон­ная по­ля­ри­за­ция), т. е. сум­мой ион­ной и элек­трон­ной по­ля­ри­за­ций. В кри­стал­лах с ко­ва­лент­ной свя­зью (напр.

, ал­маз), где элек­трон­ная плот­ность рав­но­мер­но рас­пре­де­ле­на ме­ж­ду ато­ма­ми, по­ля­ри­за­ция обу­слов­ле­на гл. обр. сме­ще­ни­ем элек­тро­нов, осу­ще­ст­в­ляю­щих хи­мич. связь. В т. н. по­ляр­ных Д. (напр., твёр­дый H2S) груп­пы ато­мов пред­став­ля­ют со­бой элек­трич.

ди­по­ли, ко­то­рые ори­ен­ти­ро­ва­ны хао­ти­че­ски в от­сут­ст­вии элек­трич. по­ля, а в по­ле при­об­ре­та­ют пре­иму­ще­ст­вен­ную ори­ен­та­цию. Та­кая ори­ен­та­ци­он­ная по­ля­ри­за­ция ти­пич­на для мн. жид­ко­стей и га­зов. По­хо­жий ме­ха­низм по­ля­ри­за­ции cвязан с «пе­ре­ско­ком» под дей­ст­ви­ем элек­трич. по­ля отд.

ио­нов из од­них по­ло­же­ний рав­но­ве­сия в ре­шёт­ке в дру­гие. Осо­бен­но час­то та­кой ме­ха­низм на­блю­да­ет­ся в ве­ще­ст­вах с во­до­род­ной свя­зью (напр., лёд), где ато­мы во­до­ро­да име­ют неск. по­ло­же­ний рав­но­ве­сия.

По­ля­ри­за­ция Д. ха­рак­те­ри­зу­ет­ся век­то­ром по­ля­ри­за­ции $\boldsymbol P$, ко­то­рый пред­став­ля­ет со­бой элек­трич. ди­поль­ный мо­мент еди­ни­цы объ­ё­ма Д.:$$\boldsymbol P=\sum\limitsN_{i=1}\boldsymbol P_i$$ где $p_i$ – ди­поль­ные мо­мен­ты час­тиц (ато­мов, ио­нов, мо­ле­кул), $N$ – чис­ло час­тиц в еди­ни­це объ­ё­ма.

Век­тор $\boldsymbol P$ за­ви­сит от на­пря­жён­но­сти элек­трич. по­ля $\boldsymbol E$. В сла­бых по­лях $\boldsymbol P=ε_0ϰ\boldsymbol E$. Ко­эф. про­пор­цио­наль­но­сти $ϰ$ на­зы­ва­ет­ся ди­элек­трической вос­при­им­чи­во­стью. Час­то вме­сто век­то­ра $\boldsymbol P$ ис­поль­зу­ют век­тор элек­трич.

ин­дук­ции $$\boldsymbol D=ε_0\boldsymbol E+\boldsymbol P=ε_0ε\boldsymbol E \text{ (в СИ)},\tag1$$где $ε$  – ди­элек­три­че­ская про­ни­цае­мость, $ε_0$ – элек­три­че­ская по­сто­ян­ная. Ве­ли­чи­ны $ϰ$ и $ε$ – осн. ха­рак­те­ри­сти­ки Д. В ани­зо­троп­ных Д. (напр.

, в не­ку­би­че­ских кри­стал­лах) на­прав­ле­ние $\boldsymbol P$ оп­ре­де­ля­ет­ся не толь­ко на­прав­ле­ни­ем по­ля $\boldsymbol E$, но и на­прав­ле­ни­ем осей сим­мет­рии кри­стал­ла. По­это­му век­тор $\boldsymbol P$ бу­дет со­став­лять разл. уг­лы с век­то­ром $\boldsymbol E$ в за­ви­си­мо­сти от ори­ен­та­ции $\boldsymbol E$ по от­но­шению к осям сим­мет­рии кри­стал­ла.

В этом слу­чае век­тор $\boldsymbol D$ бу­дет оп­ре­де­лять­ся че­рез век­тор $\boldsymbol E$ с по­мо­щью не од­ной ве­ли­чи­ны $ε$, а не­сколь­ких (в об­щем слу­чае шес­ти), об­ра­зую­щих тен­зор ди­элек­трич. про­ни­цае­мо­сти.

Диэлектрики в переменном поле

Ес­ли по­ле $\boldsymbol E$ из­ме­ня­ет­ся во вре­ме­ни $t$, то по­ля­ри­за­ция Д. не ус­пе­ва­ет сле­до­вать за ним, т. к. сме­ще­ния за­ря­дов не мо­гут про­ис­хо­дить мгно­вен­но. По­сколь­ку лю­бое пе­ре­мен­ное по­ле мож­но пред­ста­вить в ви­де со­во­куп­но­сти по­лей, ме­няю­щих­ся по гар­мо­нич. за­ко­ну, то дос­та­точ­но изу­чить по­ве­де­ние Д.

в по­ле $\boldsymbol E= E_0\sin ωt$, где $ω$ – час­то­та пе­ре­мен­но­го по­ля, $\boldsymbol E_0$ – ам­пли­ту­да на­пря­жён­но­сти по­ля. Под дей­ст­ви­ем это­го по­ля $\boldsymbol D$ и $\boldsymbol P$ бу­дут ко­ле­бать­ся то­же гар­мо­ни­че­ски и с той же час­то­той.

Од­на­ко ме­ж­ду ко­ле­ба­ния­ми $\boldsymbol P$ и $\boldsymbol E$ по­яв­ля­ет­ся раз­ность фаз $δ$, что вы­зва­но от­ста­ва­ни­ем по­ля­ризации $\boldsymbol P$ от по­ля $\boldsymbol E$. Гар­мо­нич. за­кон мож­но пред­ста­вить в ком­плекс­ном виде $\boldsymbol E=\boldsymbol E_0е{iωt},$ то­гда $\boldsymbol D=\boldsymbol D_0е{iωt},$ причём $\boldsymbol D_0=ε(ω)\boldsymbol E_0$.

Ди­элек­трич. про­ни­цае­мость в этом слу­чае яв­ля­ет­ся ком­плекс­ной ве­ли­чи­ной: $ε(ω)=ε′+iε″;$ $ε′$ и $ε″$ за­ви­сят от час­то­ты пе­ре­мен­но­го элек­трич. по­ля $ω$.

Аб­со­лют­ная ве­ли­чи­на $$|ε(ω)|=\sqrt {ε′2+ε″2}$$ оп­ре­де­ля­ет ам­пли­ту­ду ко­ле­ба­ния $D$, а от­но­ше­ние $ε′/ε″=\mathrm{tg} \delta $ – раз­ность фаз ме­ж­ду ко­ле­ба­ния­ми $\boldsymbol D$ и $\boldsymbol E$. Ве­ли­чи­на $δ$ на­зы­ва­ет­ся уг­лом ди­элек­три­че­ских по­терь. В по­сто­ян­ном элек­трич. по­ле $ω=0, ε″=0, ε′=ε$.

В пе­ре­мен­ных элек­трич. по­лях вы­со­ких час­тот свой­ст­ва Д. ха­рак­те­ри­зу­ют­ся по­ка­за­те­ля­ми пре­лом­ле­ния $n$ и по­гло­ще­ния $

Источник: https://bigenc.ru/physics/text/1960984

Свойства диэлектриков, принцип работы

Диэлектрики
Диэлектрикивещества, в которых может сохраняться более или менее длительное время раз созданное электрическое поле без затраты энергий на поддержание его.

Если в диэлектрике имеются свободные заряды, то они будут, перемещаясь под действием электрического поля и доходя до поверхности, нейтрализовать внешние заряды, создающие поле, или же создавать обратное поле, ослабляющее внешнее, приложенное.

Перемещение зарядов будет длиться до тех пор, пока результирующее поле в нем не станет равным нулю.

Движение свободных зарядов обусловливает электропроводность. Требование, чтобы в веществе существовало электрическое поле, может быть сведено к тому, чтобы электропроводность вещества была достаточно мала. Практически можно считать диэлектриком вещество, уд. сопротивление которого > 10 в 10 -й степени Q-см.

Термин диэлектрик является условным: когда вещество подвергается лишь кратковременному воздействию напряжения и поле в диэлектриках существует лишь кратковременно, они могут считаться вещества, обладающие значительно меньшим удельным сопротивлением, чем указано выше, например дестилированная вода. Наоборот, при длительно приложенном постоянном напряжении мы вынуждены в ряде случаев трактовать вещества с указанным выше уд. сопротивлением как проводники.

Все вещества независимо от агрегатного состояния построены из зарядов, связанных большими или меньшими силами взаимодействия. Чтобы вещество было диэлектриком, т. е..обладало малой электропроводностью, необходимо, чтобы заряды, ионы и электроны, из которых оно построено, при наложении поля не могли свободно перемещаться.

В изолированном атоме энергия электронов может иметь согласно требованиям волновой механики не любые, а лишь определенные дискретные значения W1, W2, W3,… (фигура, а). При соединении атомов в твердую кристаллическую решетку каждый из этих уровней несколько смещается и расщепляется на целый ряд тесно расположенных новых уровней, образующих зону, общую для всего кристалла (фигура, б).

В кристаллической решетке энергия электронов может иметь лишь значения, лежащие в пределах зон; значения же энергии, которые соответствуют промежуткам между зонами, для электронов запрещены.

Каждая зона согласно принципу Паули может вместить лишь ограниченное количество электронов.

Электроны будут стремиться расположиться на возможно более низких энергетических уровнях, однако нижняя зона не сможет их всех вместить, и они заполнят ряд зон.

Если при этом наиболее высокая из тех зон, в которых размещены электроны, будет заполнена ими лишь частично, то находящиеся в этой зоне электроны при наложении поля будут иметь возможность в пределах зоны свободно перемещаться и могут считаться свободными; данное вещество будет хорошо проводить ток (являться проводником).

Если же эта наиболее высокая из занятых зон будет заполнена электронами полностью, то электроны не могут смещаться под влиянием поля и должны считаться связанными, — данное вещество является диэлектриком.

В случае аморфных твердых веществ, характеризуемых беспорядочным расположением атомов, зоны, общие для всего кристалла, не могут образоваться, поэтому электроны будут лишены возможности перемещаться, и следовательно такое вещество окажется диэлектриком.

Помимо движения электронов необходимо учесть также движение атомов или ионов. Тепловое движение этих частиц будет заключаться в колебаниях около положения равновесия. В наличии окажется однако некоторое количество ионов, энергия теплового движения которых столь велика, что они могут преодолеть связывающие их силы.

Эти ионы мы назовем условно «свободными». Такие ионы покинут свои места и перейдут на другие, где их потенциальная энергия, так же как и в местах, откуда они ушли, будет возможно малой.

В случае диэлектрика, имеющих кристаллическую решетку с плотной упаковкой, местами, где могут находиться ионы в равновесном состоянии, являются узлы решетки.

Перескоки ионов в таких материалах согласно Шоттки могут происходить лишь в том случае, когда некоторое количество узлов решетки с самого начала не занято ионами (в решетке имеются «дырки»). Тепловое движение в этом случае сводится к беспорядочным перескокам ионов с одних узлов решетки на другие.

Аморфные диэлектрики

В аморфных диэлектриках с их более рыхлой структурой имеется значительно больше мест, в которых может находиться ион в равновесном состоянии. Затрата энергии при переходе из одного равновесного состояния в другое также будет различна.

Будут существовать переходы, требующие меньшей затраты энергии, при которых ион не будет однако полностью освобождаться от связывающих его сил, а, оставаясь «полусвязанным», перемещаться лишь на небольшое расстояние.

Эти переходы и будут в основном происходить в результате теплового движения. Некоторое значительно меньшее количество ионов, более богатых энергией, сможет полностью оторваться от связующих их сил.

Эти ионы по аналогии со случаем кристаллической решетки можно условно назвать «свободными». Данная картина теплового движения соответствует твердому состоянию.

Переход от твердого к жидкому состоянию

Переход от твердого к жидкому состоянию происходит различно для кристаллических и для аморфных веществ. В первом случае мы наблюдаем резкую t°пл T8, причем вязкость жидкости уже при температуре Тs мала.

В случае аморфных диэлектриков t°пл не наблюдается, а переход из одного состояния в другое происходит в первом приближении непрерывно путем постепенного уменьшения вязкости.

Более детальное изучение явления перехода из твердого в жидкое состояние показывает однако, что существует некоторая характерная для данного вещества температуpa Тg, при которой вязкость испытывает резкий скачок и вещество, оставаясь весьма вязким, начинает течь.

Ниже температуры Тg вещество следует считать твердым, выше — жидкостью. При температуpax, несколько превышающих Тg, аморфный диэлектрик сохраняет ряд свойств, характерных для твердого состояния. Молекулы диэлектрика остаются еще частично упруго связанными.

Чем выше температура, тем слабее эти упругие связи; при температурах, значительно превосходящих Тg, можно в первом приближении считать, что молекулы в жидкости перемещаются свободно. При температуpax, близких к началу размягчения, перемещение молекул хотя уже и является принципиально возможным, но сильно затруднено.

Внешне это сказывается в том, что вязкость такой жидкости еще очень велика. При повышении температуры перемещение молекул встречает меньше препятствия; параллельно убывает и вязкость.

За меру того, в какой степени молекулы «свободны» в своих перемещениях, мы можем поэтому выбрать вязкость жидкости. Тепловое движение молекул в жидкостях заключается:

  1. в колебании около положения равновесии, когда они связаны в комплексы,
  2. в поступательных и вращательных перемещениях когда они свободны.

При плавлении кристаллического диэлектрика, имеющих ионную решетку (например солей), получается как правило проводящая жидкость, которая диэлектриком считаться не может. В случае кристаллов с атомной и молекулярной решеткой плавление приводит в диэлектрическим жидкостям, имеющим малую вязкость; перемещение молекул в этих жидкостях можно считать свободным.

Жидкости кроме нейтральных молекул всегда содержат некоторое количество ионов, получившихся как вследствие диссоциации молекул жидкости, так и вследствие диссоциации молекул примесей. В газообразном состоянии как поступательное, так и вращательное движение молекул ничем не ограничено.

Диэлектрик в постоянном электрическом поле

При помещении диэлектрика в постоянное электрическое поле заряды, из которых он построен, оказываются подверженными действию сил обусловливающих:

  1. смещение связанных зарядов (электроны, ионы),
  2. наложение на беспорядочное тепловое движение некоторого упорядоченного, состоящего в перемещении положительных зарядов в направлении поля, отрицательных зарядов — в обратном направлении.

Это упорядоченное перемещение может:

  • а) привести к новому равновесному состоянию с несколько измененным распределением зарядов, по достижению которого упорядоченное движение прекращается (вращение дипольных молекул, перемещение полусвязанных ионов);
  • б) продолжаться непрерывно, пока в нем существует в электрическое поле (свободные ионы и электроны).

Поляризации диэлектрика

Эти процессы будут развиваться с разной скоростью. Смещение связанных зарядов потребует для своего завершения лишь весьма малого времени; значительно медленнее протекают процессы. Смещение зарядов в электрическом поле, указанное, вызывает образование обратного поля, которое ослабляет приложенное внешнее поле.

Это явление носит название поляризации диэлектрика. Мерой ослабления поля внутри него служит электрическая проницаемость (постоянная).

Поскольку процесс поляризации не протекает мгновенно, а требует для завершения некоторого конечного промежутка времени, постольку связанные с явлением поляризации величины, в частности диэлектрическая проницаемость, не являются константами, а переменными величинами, зависящими от времени.

При повышении температуры увеличивается интенсивность теплового движения, и переход в упорядоченное состояние затрудняется. Вследствие этого при наличии процессов, на поляризацию диэлектрика и его диэлектрическую проницаемость должна влиять и температуpa, причем при повышении температуры диэлектрическая проницаемость должна убывать.

Пробой диэлектрика

При всех указанных явлениях в диэлектрике после приложения напряжения через больший или меньший промежуток времени создается стационарное или квазистационарное (при переменном напряжении) состояние, характеризуемое устойчивыми во времени значениями поляризации, электропроводности или соответственно диэлектрических потерь. Однако, если увеличивать напряженность поля, то имеется некорый предел, выше которого стационарное состояние нарушается. Текущий через него ток начинает ускоренно возрастать во времени, электропроводность резко увеличивается, вещество перестает быть диэлектриком и становится проводником, происходит пробой.

Характеризующее пробой прогрессирующее во времени возрастание электропроводности может находиться в зависимости от рода вещества и его агрегатного состояния, а также таких факторов, как температуpa, вид напряжения, длительность воздействия напряжения и т. д., и обусловлено различными явлениями. Эти явления могут быть сведены в две основные группы:

  1. явления тепловые: возрастание электропроводности обусловлено прогрессирующим разогревом диэлектрика, выделяющимися в нем потерями; пробой наступает тогда, когда стационарное тепловое состояние его становится невозможным;
  2. явления чисто электрические: возрастание электропроводности обусловлено увеличением числа свободных зарядов в результате либо ударной ионизации, т. е. срыва связанных зарядов движущимися зарядами, либо срыва связанных зарядов непосредственно самим полем.

Диэлектрики находят широкое применение в технике как электроизолирующие материалы.

Источник: https://www.masterovoi.ru/dielektriki

Что такое диэлектрики и где они используются

Диэлектрики

Диэлектрики – это вещества, которые не проводят электрический ток, до определенной поры. При определенных условиях проводимость в них зарождается. Этими условиями выступают механические, тепловые – в общем, энергетические виды воздействий. Кроме диэлектриков, вещества также классифицируются на проводники и полупроводники.

Чем отличаются диэлектрики от проводников и полупроводников

Теоретическую разницу между этими тремя видами материалов можно представить, и я это сделаю, на рисунке ниже:

Рисунок красивый, знакомый со школьной скамьи, но что-то практическое из него не особо вытянешь. Однако, в этом графическом шедевре четко определена разница между проводником, полупроводником и диэлектриком.

И отличие это в величине энергетического барьера между валентной зоной и зоной проводимости.

В проводниках электроны находятся в валентной зоне, но не все, так как валентная зона – это самая внешняя граница. Точно, это как с мигрантами.

Зона проводимости пуста, но рада гостям, так как у неё полно для них свободных рабочих мест в виде свободных энергетических зон.

При воздействии внешнего электрического поля, крайние электроны приобретают энергию и перемещаются в свободные уровни зоны проводимости. Это движение мы еще называем электрическим током.

В диэлектриках и проводниках всё аналогично, за исключением того, что имеется “забор” – запрещенная зона. Эта зона расположена между валентной и зоной проводимости. Чем больше эта зона, тем больше энергии требуется для преодоления электронами этого расстояния.

У диэлектриков величина зоны больше, чем у полупроводников. Этому есть даже условие: если дЭ>3Эв (электронвольт) – то это диэлектрик, в обратном случае дЭ

В данной статье речь далее пойдет только о диэлектриках.

И раз уж мы чуть углубились в науку, то поговорим далее о свойствах и величинах, которые характеризуют эти электротехнические материалы в общем.

Виды и типы диэлектриков

Классификация диэлектриков довольна обширная. Тут встречаются жидкие, твердые и газообразные вещества. Далее они делятся по определенным признакам. Ниже приведена условная классификация диэлектриков с примерами в форме списка.

  • газообразные
    • – полярные
    • – неполярные (воздух, элегаз)
  • жидкие
  • твердые
    • – центросимментричные
      • – аморфные
        • – смолы, битумы (эпоксидная смола)
        • – стекла
        • – неупорядоченные полимеры
      • – поликристаллы
        • – нерегулярные кристаллы
        • – керамика
        • – упорядоченные полимеры
        • – ситаллы
      • – монокристаллы
        • – молекулярные
        • – ковалентные
        • – ионные
          • – параэлектрики смещения
          • – параэлектрики „порядок-беспорядок”
        • – дипольные
      • – нецентросимментричные
        • – монокристаллы
          • – пироэлектрики
            • – сегнетоэлектрики смещения
            • – сегнетоэлектрики „порядок-беспорядок”
            • – линейные пироэлектрики
          • – пьезоэлектрики
            • – с водородными связями
            • – ковалентные
            • – ионные
        • – текстуры
          • – электронных дефектов
          • – ионных дефектов
          • – полярных молекул
          • – макродиполей
          • – сегнетоэлектрических доменов
          • – кристаллов в матрице

Если брать жидкие и газообразные диэлектрики, то основная классификация лежит в вопросе полярности. Разница в симметричности молекул. В полярных молекулы несимметричны, в неполярных – симметричны. Несимметричные молекулы называются диполями.

В полярных жидкостях проводимость настолько велика, что их невозможно использовать в качестве изоляционных веществ. Поэтому для этих целей используют неполярные, тоже трансформаторное масло.

А наличие полярных примесей даже в сотых долях значительно снижает планку пробоя и негативно сказывается на изоляционных свойствах неполярных диэлектриков.

кристаллы представляют собой нечто среднее между жидкостью и кристаллом, как следует из названия.

Еще популярным вопросом о свойствах и применении жидких диэлектриков будет следующий: вода – диэлектрик или проводник? В чистой дистиллированной воде отсутствуют примеси, которые могли бы вызвать протекание тока. Чистую воду можно создать в лабораторных, промышленных условиях. Эти условия сложны и трудновыполнимы для обычного человека. Есть простой способ проверить проводит ли дистиллированная вода ток.

Создать электрическую цепь (источник тока – провод – вода – провод – лампочка – другой провод – источник тока), в которой одним из участков для протекания тока будет сосуд с дистиллированной водой. При включении схемы в работу, лампочка не загорится – следовательно ток не проходит. Ну а если загорится, значит вода с примесями.

Поэтому любая вода, которую мы встречаем: из крана, в озере, в ванной – будет проводником за счет примесей, которые создают возможность для протекания тока. Не купайтесь в грозу, не работайте влажными руками с электричеством. Хотя чистая дистиллированная вода – полярный диэлектрик.

Для твердых диэлектриков классификация в основном лежит в вопросе активности и пассивности что ли. Если свойства постоянны, то диэлектрик используют в качестве изоляционного материала, то есть он пассивен.

Если свойства меняются, в зависимости от внешних воздействий (тепло, давление), то этот диэлектрик применяют для других целей.

Бумага является диэлектриком, если вода пропитана водой – то ток проводится и она проводник, если бумага пропитана трансформаторным маслом – то это диэлектрик.

Фольгой называют тонкую металлическую пластину, металл – как известно является проводником. В продаже имеется например ПВХ-фольга, тут слово фольга для наглядности, а слово ПВХ – для понимания смысла – ведь ПВХ это диэлектрик. Хотя в википедии – фольгой называется тонкий лист металла.

Аморфные жидкости – это и смола, и стекло, и битум, и воск. При повышении температуры этот диэлектрик тает, это замороженные вещества – это дикие определения, которые характеризуют лишь одну грань правды.

Поликристаллы – это, как бы сросшиеся кристаллы, объединенные в один кристалл. Например, соль.

Монокристалл – это цельный кристалл, в отличие от вышеупомянутого поликристалла имеющий непрерывную кристаллическую решетку.

Пьезоэлектрики – диэлектрики, у которых при механическом воздействии (растяжении-сжатии), возникает процесс ионизации. Применяется в зажигалках, детонаторах, УЗИ-обследовании.

Пироэлектрики – при изменении температуры в этих диэлектриках происходит самопроизвольная поляризация. Также она происходит при механическом воздействии, то есть пироэлектрики являются еще и пьезоэлектриками, но не наоборот. Примерами служат янтарь и турмалин.

Физические свойства диэлектриков

Чтобы оценить качество и степень пригодности диэлектрика, необходимо как-то описать его параметры. Если следить за этими параметрами, то можно вовремя предотвратить аварию, заменив элемент на новый с допустимыми параметрами.

Этими параметрами выступают: поляризация, электропроводность, электрическая прочность и диэлектрические потери.

Для каждого из этих параметров существует своя формула и постоянная величина, в сравнении с которой производится заключение о степени пригодности материала.

Главными электрическими свойствами диэлектриков являются поляризация (смещение зарядов) и электропроводность (способность проводить электрический ток) Смещение связанных зарядов диэлектрика или их ориентация в электрическом поле называется поляризацией. Это свойство диэлектрических материалов характеризуется относительной диэлектрической проницаемостью ε. При поляризации на поверхности диэлектрика образуются связанные электрические заряды.

В зависимости от типа диэлектрика поляризация может быть: электронной, ионной, дипольно-релаксационной, спонтанной. Более подробно про их свойства на инфографике ниже.

Под электропроводностью понимают способность диэлектрика проводить электрический ток. Ток, протекающий в диэлектрике называется током утечки. Ток утечки состоит из двух составляющих – тока абсорбционного и тока сквозного. Сквозные токи обусловлены наличием свободных зарядов в диэлектрике, абсорбционный ток – поляризационными процессами до момента установления равновесия в системе.

Величина электропроводности зависит от температуры, влажности и количества свободных носителей заряда.

При увеличении температуры электропроводность диэлектриков увеличивается, а сопротивление падает.

Зависимость от влажности вновь возвращает нас к классификации диэлектриков. Ведь, неполярные диэлектрики не смачиваются водой и на изменение влажности им нет дела. А у полярных диэлектриков при увеличении влажности повышается содержание ионов, и электропроводность увеличивается.

Проводимость диэлектрика состоит из поверхностной и объемной проводимостей. Известно понятие удельной объемной проводимости, обозначается буквой сигма σ. А обратная величина называется удельное объемной сопротивление и обозначается буквой ро ρ.

Резкое увеличение проводимости в диэлектрике при возрастании напряжения может привести к электрическому пробою. И аналогично, если сопротивление изоляции падает, значит изоляция не справляется со своей задачей и необходимо применять меры. Сопротивление изоляции состоит из поверхностного и объемного сопротивлений.

Под диэлектрическими потерями в диэлектриках понимают потери тока внутри диэлектрика, которые рассеиваются в виде тепла. Для определения этой величины вводят параметр тангенс дельта tgδ. δ – угол, дополняющий до 90 градусов, угол между током и напряжением в цепи с емкостью.

Диэлектрические потери бывают: резонансные, ионизационные, на электропроводность, релаксационные. Теперь подробнее поговорим про каждый тип.

Электрическая прочность это отношение пробивного напряжения к расстоянию между электродами (или толщина диэлектрика). Эта величина определяется минимальной величиной напряженности электрического поля, при которой произойдет пробой.

Пробой может быть электрическим (ударная ионизация, фотоионизация), тепловым (большие диэлектрические потери, следовательно много тепла, и обугливание с оплавлением может произойти) и электрохимическим (в результате образования подвижных ионов).

И в конце таблица диэлектриков, как же без нее.

В таблице выше приведены данные по электрической прочности, удельному объемному сопротивлению и относительной диэлектрической проницаемостью для различных веществ. Также тангенс угла диэлектрических потерь не обошли стороной.

Сохраните в закладки или поделитесь с друзьями

Трансформаторное масло nytro 11gx

Электротехническая медь

Самое популярное

Единицы измерения физвеличин

Схемы групп соединения обмоток трансформатора

Изолированная, эффективно заземленная и глухозаземленная нейтраль

Силовой трансформатор звезда треугольник

Как проверить кабель мегаомметром

Источник: https://pomegerim.ru/electrotehnicheskie-materialy/dielektriki.php

Ваш педагог
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: