ДИСПЕРСНЫЕ СИСТЕМЫ

Дисперсные системы и растворы

ДИСПЕРСНЫЕ СИСТЕМЫ

Существует классификация дисперсных систем по размеру частиц дисперсной фазы. Выделяют, молекулярно-ионные (< 1 нм) – глюкоза, сахароза, коллоидные (1-100 нм) – эмульсии (масло) и суспензии (раствор глины) и грубодисперсные (>100 нм) системы.

Различают гомогенные и гетерогенные дисперсные системы. Гомогенные системы по-другому называют истинными растворами.

Растворы

По агрегатному состоянию растворы делят на газообразные (воздух), жидкие, твердые (сплавы). В жидких растворах существует понятие растворителя и растворенного вещества. В большинстве случаев растворителем служит вода, однако это могут быть и неводные растворители (этанол, гексан, хлороформ).

Способы выражения концентрации растворов

Для выражения концентрации растворов используют: массовую долю растворенного вещества (, %), которая показывает, сколько граммов растворенного вещества содержится в 100 г раствора.

Молярная концентрация (СМ, моль/л) показывает, сколько моль растворенного вещества содержится в одном литре раствора. Растворыс концентрацией 0,1 моль/л называют децимолярными, 0,01 моль/л – сантимолярными, а с концентрацией 0,001 моль/л – миллимолярными.

Нормальная концентрация (СН, моль-экв/л) показывает число эквивалентов растворенного вещества в одном литре раствора.

Моляльная концентрация (Сm, моль/1кг H2O) – число моль растворенного вещества, приходящееся на 1 кг растворителя, т.е. на 1000 г воды.

Мольная доля растворенного вещества (N) – это отношение числа моль растворенного вещества к числу моль раствора. Для газовых растворов мольная доля вещества совпадает с объемной долей ( φ).

Растворимость

По растворимости растворы и вещества делят на 3 группы: хорошо растворимые (сахар), малорастворимые (бензол, гипс) и практически нерастворимые (стекло, золото, серебро).

Абсолютно нерастворимых веществ в воде нет, нет приборов, с помощью которых возможно вычислить количества вещества, которое растворилось. Растворимость зависит от температуры (рис. 1), природы вещества и давления (для газов).

При повышении температуры, растворимость вещества увеличивается.

Рис. 1. Пример зависимости некоторых солей в воде от температуры

С понятием растворимости тесно связано понятие насыщенного раствора, поскольку растворимость характеризует массу растворенного вещества в насыщенном растворе. Пока вещество способно растворяться раствор называют ненасыщенным, если вещество перестает растворяться – насыщенным; на некоторое время можно создать пересыщенный раствор.

Давление пара растворов

Пар, находящийся в равновесии с жидкостью называется насыщенным. При заданной температуре давление насыщенного пара над каждой жидкостью – величина постоянная. Поэтому каждой жидкости присуще давление насыщенного пара. Рассмотрим это явление на следующем примере: раствор неэлектролита (сахарозы) в воде – молекулы сахарозы значительно больше молекул воды.

Давление насыщенного пара в растворе создает растворитель. Если сравнить между собой давление растворителя и давление растворителя над раствором при одинаковой температуре, то в растворе число молекул, перешедших в пар над раствором меньше, чем в самом растворе.

Отсюда следует, что давление насыщенного пара растворителя над раствором всегда ниже, чем над чистым растворителем при той же температуре.

Если обозначить давление насыщенного пара растворителя над чистым растворителем p0, а над раствором – p, то относительное понижение давления пара над раствором будет представлять собой (p0-p)/p0.

На основании этого Ф.М. Рауль вывел закон: относительное понижение насыщенного пара растворителя над раствором равно молярной доле растворенного вещества : (p0-p)/p0 = N (молярная доля растворенного вещества).

Криоскопия. Эбулиоскопия. Второй закон Рауля

Понятия криоскопии и эбулиоскопии тесно связаны с температурами замерзания и кипения растворов, соответственно. Так, температура кипения и кристаллизация растворов зависят от давления пара над раствором. Любая жидкость кипит при той температуре, при которой давление ее насыщенного пара достигает внешнего (атмосферного давления).

При замерзании кристаллизация начинается при той температуре, при которой давление насыщенного пара над жидкой фазой равно давлению насыщенного пара над твердой фазой. Отсюда – второй закон Рауля: понижение температуры кристаллизации и повышение температуры кипения раствора пропорционально концентрациям растворенного вещества. Математическое выражение этого закона:

Δ Tкрист = K × Cm,

Δ Tкип = Е × Cm,

где К и Е криоскопическая и эбулиоскопическая константы, зависящие от природы растворителя.

Примеры решения задач

Источник: http://ru.solverbook.com/spravochnik/ximiya/11-klass/dispersnye-sistemy-i-rastvory/

Дисперсные системы – классификация, виды и свойства

ДИСПЕРСНЫЕ СИСТЕМЫ

Дисперсные системы представляют собой гетерогенные структуры, внутри которых одно или более веществ распределяются в другом. Они никак не контактируют друг с другом, химические или иные реакции полностью отсутствуют. Нет и смешения. Фактически каждый элемент является самостоятельным, и если его извлечь, он сохраняет свое изначальное состояние.

То вещество, которого больше всего в соединении, называется дисперсной средой, второстепенное — фазой. Частицы между собой не взаимодействуют, даже имеется некая прослойка, которая разделяет их. Поэтому системы являются гетерогенными или неоднородными.

Примеры дисперсных систем встречаются в природе постоянно — морская вода, почва, большинство продуктов питания и т. д. Они могут иметь любое агрегатное состояние. Иногда в среде находится сразу несколько фаз. Тогда их выделяют с помощью центрифуги или методом сепарирования.

Классификация по агрегатному состоянию

Классификация дисперсных систем осуществляется в соответствии с агрегатными состояниями вещества. Их имеется три вида: жидкое, твердое и газообразное. Поэтому разделение происходит на 9 основных категорий, примеры и описание которых можно посмотреть в таблице ниже.

Вид Среда Фаза Пример
Газ х 2 Газ Газ Отсутствуют
Жидкость+газ Газ Жидкость Туман, облако
Твердое тело (далее ТТ)+газ Газ ТТ Дым, пыль
Газ+жидкость Жидкость Газ Любая пена
Жидкость х 2 Жидкость Жидкость Молоко
ТТ+жидкость Жидкость ТТ Известь, ил
Газ+ТТ ТТ Газ Пемза
Жидкость+твердое тело ТТ Жидкость Грунт
ТТ+ТТ ТТ ТТ Любые композиционные материалы, такие как бетон или цемент

Каждый тип классификации, в свою очередь, имеет свое название. К примеру, газообразные соединения называются преимущественно аэрозолями, за редким исключением. Жидкие вещества — газовые эмульсии или суспензии. Взаимодействия, когда средой является твердое тело, определяются, как сплавы, капиллярные системы или пористые субстанции.

Существующие виды

Фазные частицы могут взаимодействовать между собой. При этом среда остается стабильной, химические реакции с ней отсутствуют. В зависимости от типа интерактивности, формируются виды дисперсных систем:

  • Свободнодисперсные. Основное и главное свойство такой системы — текучесть. Поэтому сюда относят любые аэрозоли и растворы.
  • Связнодисперсные. Это твердые или полутвердые системы. К ним относятся все концентрированные пасы или аморфные вещества.

Некоторые субстанции могут быть одновременно двумя видами. Отдельные золи при нормальной температуре являются достаточно текучими, чтобы определить их, как свободнодисперсные. Однако, если градус уменьшается, молекулы соединяются друг с другом сильнее, приобретая характеристики твердого тела. Поэтому переходят в связнодисперсную форму.

Взвеси и их особенности

Те дисперсные системы, фазы в которых можно легко определить невооруженным глазом, называются взвесями. Их характерная черта — непрозрачность. Если необходимо отделить среду и второстепенное вещество, можно воспользоваться рядовыми фильтрами, или процедурой отстаивания. Категорию разделяют на несколько видов:

  • Эмульсии. В жидком агрегатном состоянии находится фаза и среда, они не взаимодействуют друг с другом и не растворяются. Многие получаются посредством гомогенизации. К ним относят большинство лекарственных препаратов или молоко.
  • Суспензии. Здесь средой является жидкость, а фазой — твердая структура. Получают посредством пересыпания в жидкость порошка. Структура получается текучая, т. к. фаза крайне мелкая. Если оставлять структуру в неподвижном состоянии, выпадает осадок. Почти все строительные растворы относятся к категории.
  • Аэрозоли. Взвесь в этом случае располагается в газе. Примеров множество, встречаются как в природе, так и в быту. Например, грозовые или обычные облака, туманы и некоторые виды осадков. Большинство химикатов, производимых для обработки сельскохозяйственных структур, тоже являются аэрозолями.

Взвеси важны в деятельности человека, равно как природных процессах. Почти все производство построено на применении растворов (удобрения, металлы, бумага и пр.). В окружающем мире естественные соединения с водой тоже встречаются постоянно, например, почвообразование или насыщение грунта полезными веществами. В жизнедеятельности всех живых существ они тоже принимают непосредственное участие.

Коллоидные системы

В отличие от взвесей, коллоидные системы невозможно разделить без использования современной техники или специальных препаратов. Без нужного инструмента и невооруженным глазом они выглядят, как однородная субстанция. Из-за этого определить дисперсность становится сложно. Подразделяются на два типа:

  • Растворы или золи. Главное свойство — прозрачность. Чтобы определить наличие дисперсности, можно пропустить сквозь жидкость направленный пучок света. Тогда появляется «дорожка». Фазные частицы отражают лучи, образуя таковую. В качестве примера можно рассмотреть крахмал, белки, клей, в человеческом организме — лимфа или кровь. Чтобы отделить среду и второстепенное вещество, задействуется техника. Даже при продолжительном отстаивании осадка не образуется.
  • Гели или студни. Это различные медицинские препараты, кондитерские кремы, желатин и многое другое. Многие изначально являются золями, затем переходят в новое состояние при понижении температуры. Отдельные преобразуются в эластичные твердые вещества, как пластилин или глина для лепки.

Если взвеси играют большую роль в природных процессах, то коллоидные системы являются неотъемлемой частью химии. Чаще всего они добываются посредством смешивания в специальном оборудовании. Без подобной структуры не удалось бы создать множество лекарственных препаратов, удобрений и других полезных материалов.

Высокомолекулярные вещества

Растворы высокомолекулярных веществ бывают двух видов: истинные и коллоидные. Все зависит от разных качеств, таких как тип фазы, среды, температуры и иных условий. У них есть ряд свойств:

  • Процессы смешения происходят естественно и крайне медленно.
  • Сначала происходит набухание, а затем смешивание.
  • Полимерные и истинные растворы отличаются существенно. Те законы, которые характерны для одних (Рауля, Вант-Гоффа), несвойственны другим.
  • По всей полученной субстанции свойства могут различаться из-за разного направления и/или размеров молекул.
  • Повышенная вязкость.

Отдельные полимерные растворы образуются самопроизвольно. Когда процесс набухания образуется неорганическим способом, дисперсная система перестает существовать, поскольку фаза полностью растворяется в среде, образуется химическая реакция. Если же он органический, то появляется студень.

Ключевые свойства

Свойства дисперсных систем определяются по одному основному фактору — при их возникновении образуется четкая межфазная граница. Также появляется некоторое значение поверхностной энергии, которая не комбинируется, рассматривается в отдельном порядке по отношению к среде и фазе.

В природе и продуктах жизнедеятельности человека встречаются грубодисперсные системы. Здесь фазу и среду легко можно отличить под стандартным микроскопом, а то и вовсе невооруженным глазом. Но если рассматривать ее в целом, то она представляет собой сложную совокупность коллоидных веществ.

В свою очередь, тонкодисперсные системы являются настолько мелкими, что рассмотреть их можно только в специальный ультразвуковой микроскоп. В некоторых случаях даже при направленном в жидкость луче не появляется характерной «дорожки». Несмотря на существенные различия, свойства везде одинаковы. Они зависят от таких показателей, как:

  • Степень (количество фаз).
  • Молекулярный вес.
  • Размеры частиц.
  • Агрегатное состояние.
  • Лиофобная/лиофильная группа.

В жизни человека рассматриваемые системы встречаются постоянно. Такое явление может быть как природным и естественным, так и выводимым в искусственном виде. Многочисленные лекарственные смеси, различные минеральные или химические удобрения, а также производственные процессы построены на дисперсности.

Источник: https://nauka.club/khimiya/dispersnye-sistemy.html

3. Химические системы: растворы, дисперсные системы, полимеры и олигомеры. Химия. Курс лекций

ДИСПЕРСНЫЕ СИСТЕМЫ

Растворы – однородные смеси переменного состава. Растворы делят на газовые, жидкие и твердые.

К газовым растворам относят воздух, природные горючие газы и др., их чаще называют смесями.

Наибольшее значение имеют жидкие растворы, например, воды озер, рек, морей, нефть и др.

К твердым растворам относятся многие сплавы.

Всякий раствор состоит из растворенного вещества и растворителя, то есть среды, в которой это вещество равномерно распределено в виде молекул, агрегатов молекул и ионов.

Возможность образования растворов обуславливается растворимостью его компонентов. Наибольшую взаимную растворимость имеют вещества со сходным строением и свойствами.

Важнейшей характеристикой раствора является его состав. Наиболее распространен способ выражения состава раствора через массовые проценты.

Так, 20 %-ный раствор какого-либо вещества – это раствор, в 100 г которого содержится 20 г этого вещества.

Другой часто используемы способ выражения состава раствора – молярная концентрация, которая показывает число молей растворенного вещества в 1 л раствора.

Иногда пользуются титром раствора. Титр раствора выражается числом граммов растворенного вещества в 1 мл раствора.

Растворы получаются при взаимодействии растворимого вещества и растворителя.

Абсолютно нерастворимых веществ нет.

Процесс растворения продолжается до установления состояния равновесия – состояния насыщенного раствора.

При самопроизвольном образовании растворов изобарный потенциал (энергия Гиббса) системы уменьшается, а D G< 0, для насыщенного раствора D G=0.

Движущими силами образования растворов являются энтальпийный и энтропийный факторы.

Энтропийным фактором объясняется самопроизвольное смешивание двух инертных, практически не взаимодействующих газов гелия и неона.

Чем слабее взаимодействие молекул растворителя и растворенного вещества, тем больше роль энтропийного фактора в образовании раствора. Знак изменения энтропии зависит от степени изменения порядка в системе до и после процесса растворения. При растворении газов в жидкости энтропия всегда уменьшается, а при растворении кристаллов возрастает.

Знак изменения энтальпии растворения определяется знаком суммы всех тепловых эффектов процессов, сопровождающих растворение, из которых основной вклад вносят разрушение кристаллической решетки и взаимодействие образовавшихся ионов с молекулами растворителя.

Растворитель и растворенное вещество оказывают значительное влияние друг на друга и взаимно изменяют свои свойства.

Степень влияния зависит от природы того или иного вещества, и оно наиболее существенно проявляется в диссоциации молекул растворенного вещества или их ассоциации.

Преимущественное прохождение того или иного процесса определяется концентрацией вещества в растворе, температурой и соотношением полярностей растворителя и растворенного вещества.

Для понимания природы растворов важное значение имеют работы Д.И. Менделеева, создавшего химическую теорию растворов.

До работ Менделеева считалось, что растворы – это результат физического процесса измельчения растворяемого вещества в среде растворителя, причем между частицами в растворе отсутствуют какие-либо взаимодействия.

На основании экспериментальных факторов Менделеев доказал наличие в растворах определенных химических соединений – комплексов растворенного вещества с растворителем. Эти комплексы называются сольватами (для водных растворов – гидратами).

Идеальный раствор – это раствор, в котором силы межмолекулярного взаимодействия молекул растворителя и растворенных веществ одинаковы.

При образовании идеального раствора энтальпия системы не изменяется. Каждый компонент в составе идеального раствора ведет себя независимо от других компонентов.

Дисперсные системы

Истинные растворы содержат молекулы или атомы, размеры которых обычно не превышают 5× 10-9 м (5 нм). При увеличении размеров частиц система становится гетерогенной, состоящей из двух и более фаз с сильно развитой поверхностью раздела. Такие системы получили название дисперсных систем.

Все дисперсные системы состоят из сплошной фазы, называемой дисперсной средой, и прерывистой фазы (частиц) называемой дисперсной фазой. В зависимости от размера частиц дисперсные системы подразделяются на группы:

  1. взвеси (суспензии, эмульсии) у которых частицы имеют размер 1000 нм (10-6 м) и более;
  2. коллоидные системы, размер частиц которых лежит в пределах от 1 до 500 нм (10-9- 5× 10-7 м).

Дисперсные системы также классифицируются по агрегатным состояниям дисперсной фазы и дисперсной среды:

Тип дисперсной системы

Фазовое состояние

Примеры

дисперсной среды

дисперсной фазы

Аэрозоль

газ

жидкость

туман, облака

Аэрозоль

газ

твердая

дым, пыль

Пена

жидкая

газ

взбитые сливки

Эмульсия

жидкая

жидкая

молоко, майонез

Золь

жидкая

твердая

краски

Твердая эмульсия

твердая

жидкая

масло

Гель

твердая

жидкая

желе

Полимеры и олигомеры

Полимеры – высокомолекулярные соединения, которые характеризуются молекулярной массой от нескольких тысяч до многих миллионов.

Молекулы полимеров, называемые также макромолекулами, состоят из большего числа повторяющихся звеньев.

Вследствие большой молекулярной массы макромолекул полимеры приобретают некоторые специфические свойства. Поэтому они выделены в особую группу химических соединений.

Отдельную группу также составляют олигомеры, которые по значению молекулярной массы занимают промежуточное положение между низкомолекулярными и высокомолекулярными соединениями.

Различают неорганические, органические и элементоорганические полимеры. Органические полимеры подразделяют на природные и синтетические.

Макромолекулы полимеров могут быть линейными, разветвленными и сетчатыми.

Линейные полимеры образуются при полимеризации мономеров или линейной поликонденсации.

Разветвленные полимеры могут образовываться как при полимеризации, так и при поликонденсации. Разветвление полимеров при полимеризации может быть вызвано передачей цепи на макромолекулу, росте боковых цепей за счет сополимеризации и другими причинами.

Линейные и разветвленные макромолекулы из-за способности атомов и групп вращаться вокруг ординарных связей постоянно изменяют свою пространственную форму, имеют много конформационных структур.

Это свойство обеспечивает гибкость макромолекул, которые могут изгибаться, скручиваться, распрямляться. Поэтому для линейных и разветвленных полимеров характерно высокоэластическое состояние, т.е.

способность к обратимой деформации под действием относительно небольших внешних сил.

При разветвлении полимеров эластические и термопластические свойства становятся менее выраженными. При образовании сетчатой структуры термопластичность теряется. По мере уменьшения длины цепей в ячейках сеток утрачивается и эластичность полимеров, например, при переходе от каучука к эбониту.

Линейные макромолекулы могут быть регулярную и нерегулярную структуру. В полимерах регулярной структуры отдельные звенья цепи повторяются в пространстве в определенной порядке. Полимеры регулярной структуры получили название стереорегулярных.

Большинство полимеров обычно находится в аморфном состоянии. Некоторые полимеры в определенных условиях могут быть иметь кристаллическую структуру. Аморфные полимеры могут находиться в стеклообразном, высокоэластическом и вязкотекучем состояниях.

Химические свойства зависят от состава, молекулярной массы и структуры полимеров. Им свойственны реакции соединения макромолекул поперечными связями, взаимодействия функциональных групп друг с другом и низкомолекулярными веществами и деструкции. Наличие у макромолекул двойных связей и функциональных групп обуславливает повышение реакционной способности полимеров.

Механические свойства определяются элементным составом, молекулярной массой, структурой и физическим состоянием макромолекул.

Все вещества подразделяются на диэлектрики, полупроводники и проводники.

Композиционные материалы (композиты) – состоят из основы (органической, полимерной, углеродной, металлической, керамической), армированным наполнителем, в виде высокопрочных волокон и нитевидных кристаллов.

В качестве основы используются синтетические смолы и полимеры.

Композиты на основе полимеров используются как конструкционные, электро- и теплоизоляционные, коррозийностойкие в электротехнической, авиационной, радиотехнической промышленности, космической технике и т.д.

Источник: https://siblec.ru/estestvennye-nauki/khimiya/3-khimicheskie-sistemy-rastvory-dispersnye-sistemy-polimery-i-oligomery

Ваш педагог
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: