Ферриты

Что такое Ферриты

Ферриты

Ферриты — неметаллические твердые магнитные материалы (ферримагнетики) -химические соединения оксидов главным образом переходных металлов соксидом железа. Применяют ферриты со структурой шпинели (т. н.

феррошпинели) и со структурой граната (феррогранаты), а также гексаферритыи ортоферриты. Изделия из ферритов обычно изготовляют спеканием. Ферритыобладают низкой электропроводностью (отличаются малыми потерями навихревые токи) и высокой намагниченностью.

Применяются в устройствахрадиотехники, техники связи, электроники, вычислительной техники.

Определение слова «Ферриты» по БСЭ:

Ферриты — химические соединения окиси железа Fe2O3 с окислами других металлов. У многих Ф. сочетаются высокая намагниченность и полупроводниковые или диэлектрические свойства, благодаря чему они получили широкое применение как Магнитные материалы в радиотехнике, радиоэлектронике, вычислительной технике.
В состав Ф.

входят Анионы кислорода O2-, образующие остов их кристаллической решётки. в промежутках между ионами кислорода располагаются Катионы Fe3+, имеющие меньший радиус, чем анионы O2-, и катионы Mek+ металлов, которые могут иметь радиусы различной величины и разные валентности k.

Существующее между катионами и анионами кулоновское (электростатическое) взаимодействие приводит к формированию определённой кристаллической решётки и к определённому расположению в ней катионов. В результате упорядоченного расположения катионов Fe3+ и Mek+ Ф. обладают Ферримагнетизмом и для них характерны достаточно высокие значения намагниченности и точек Кюри. Различают Ф.-шпинели, Ф.

-гранаты, ортоферриты и гекса ферриты.
Ферриты-шпинел и имеют структуру минерала Шпинели c общей формулой MeFe2O4, где Me — Ni2+, Co2+, Fe2+, Mn2+, Mg2+, Li1+, Cu2+. Элементарная ячейка Ф.

-шпинели представляет собой куб, образуемый 8 молекулами MeOFe2O3 и состоящий из 32 анионов O2-, между которыми имеется 64 тетраэдрических (A) и 32 октаэдрических (В) промежутков, частично заселённых катионами Fe3+ и Me2+ (рис. 1). В зависимости от того, какие ионы и в каком порядке занимают промежутки A и В, различают прямые шпинели (немагнитные) и обращенные шпинели (ферримагнитные).

В обращенных шпинелях половина ионов Fe3+ находится в тетраэдрических промежутках, а в октаэдрических промежутках — 2-я половина ионов Fe3+ и ионы Me2+. При этом намагниченность MA октаэдрической подрешётки больше тетраэдрической MB, что приводит к возникновению ферримагнетизма.

Ферриты-гранаты редкоземельных элементов R3+ (Gd3+, Tb3+, Dy3+, Ho3+, Er3+, Sm3+, Eu3+) и иттрия Y3+ имеют кубическую структуру граната с общей формулой R3Fe5O12. Элементарная ячейка Ф.-гранатов содержит 8 молекул R3Fe5O12. в неё входит 96 ионов O2-, 24 иона R3+ и 40 ионов Fe3+. В Ф.

-гранатах имеется три типа промежутков, в которых размещаются катионы: большая часть ионов Fe3+ занимает тетраэдрические (d), меньшая часть ионов Fe3+ — октаэдрические (я) и ионы R3+ — додекаэдрические места (с). Соотношение величин и направлений намагниченностей катионов, занимающих промежутки d, а, с, показано на рис. 2.
Ортоферритами называют группу Ф.

с орторомбической кристаллической структурой. Их образуют редкоземельные элементы или иттрий по общей формуле RFeO3-. Ортоферриты изоморфны минералу Перовскиту (см. Изоморфизм). По сравнению с Ф.-гранатами они имеют небольшую намагниченность, т.к. обладают неколлинеарным антиферромагнетизмом (слабым ферромагнетизмом (См.

Слабый ферромагнетизм)) и только при очень низких температурах (порядка нескольких К и ниже) — ферримагнетизмом.
Ферриты гексагональной структуры (гексаферриты) имеют общую формулу MeO (Fe2O3), где Me — ионы Ba, Sr или Pb. Элементарная ячейка кристаллической решётки гексаферритов состоит из 38 анионов O2-, 24 катионов Fe3+ и 2 катионов Me2+ (Ba2+, Sr2+ или Pb2+).

Ячейка построена из двух шпинельных блоков, разделённых между собой ионами Pb2+ (Ba2+ или Sr2+), O2- и Fe3+. Если окиси железа и бария спекать совместно с соответствующими количествами следующих металлов: Mn, Cr, Со, Ni, Zn, то можно получить ряд новых оксидных ферримагнетиков.
Некоторые гексаферриты обладают высокой коэрцитивной силой и применяются для изготовления постоянных магнитов.

Большинство Ф. со структурой шпинели, феррит-гранат иттрия и некоторые гексаферриты используются как Магнитно-мягкие материалы.
При введении примесей и создании нестехеометричности состава (переменности состава как по катионам, так и по кислороду) электрическое сопротивление Ф. изменяется в широких пределах. Ф. в полупроводниковой технике не применяются из-за низкой подвижности носителей тока. Синтез поликристаллических Ф. осуществляется по технологии изготовления керамики. Из смеси исходных окислов прессуют изделия нужной формы, которые подвергают затем спеканию при температурах от 900 °С до 1500 °С на воздухе или в специальных газовых средах.Монокристаллические Ф. выращиваются методами Чохральского, Вернейля и др. (см. Монокристалл).

Лит.: Рабкин Л. И., Соскин С. А., Эпштейн Б. Ш., Ферриты. Строение, свойства, технология производства, Л., 1968. Смит Я., Вейн Х. Ферриты, пер. с англ., М., 1962. Гуревич А. Г., Магнитный резонанс в ферритах и антиферромагнетиках, М., 1973.

К. П. Белов.

Рис. 1. Кристаллическая структура ферритов-шпинелей: а — схематическое изображение элементарной ячейки шпинельной структуры (ее удобно делить на 8 равных частей — октантов).

б — расположение ионов в смежных октантах ячейки (заштрихованном и белом), белые кружки — ионы О2-, чёрные — ионы металла в октаэдрических и тетраэдрических промежутках. в — ион металла в тетраэдрическом промежутке.

г — ион металла в октаэдрическом промежутке.

Рис. 2. Схематическое изображение величин и направлений векторов намагниченности катионов, образующих магнитные подрешётки d, а и c в ферритах-гранатах.

Источник: https://xn----7sbbh7akdldfh0ai3n.xn--p1ai/ferriti.html

Феррит – свойства и применение

Ферриты

О минерале, который притягивается к стальным изделиям, человечеству стало известно еще в 3 веке до нашей эры. Люди были поражены, но дальнейшего развития способов его применения не последовало. Второе рождение феррита произошло после открытия компаса. Кусок минерала, закрепленный на плавающей доске, всегда указывал в одну сторону, облегчая морякам поиск нужного направления.

Окончательное признание феррит получил после опубликования теории взаимодействия электрических и магнитных полей Фарадеем. Это позволило миру взглянуть по-новому на свойства и применение феррита. Так что же это за материал и почему он так интересен радиоэлектроникам.

Общая характеристика и химический состав

Ферриты представляют собой сплав оксида железа с оксидом другого ферромагнитного металла: медь, цинк, кобальт, никель и т. д. В промышленном применении наибольшее распространение получили следующие типы ферритов:

  • Никель-цинковый феррит. Имеют свойства высокого удельного электросопротивления, что делает их более выгодными в использовании на частоте от 500 КГц до 200 МГц.
  • Магний-марганцевый. Их применяют при работе со звуковыми частотами.
  • Марганцово – цинковый. Данный тип имеет наименьшие потери на вихревые токи.

Свойства и особенности 

Это – полупроводники, свойства проводить ток которых повышается с увеличением температуры. Плотность ферритов зависит от марки, и колеблется в пределах от 4000 до 5000 кг\м3. Ферриты обладают повышенными теплофизическими свойствами. Коэффициент тепловой проводимости равен 4,1 Вт/(м·К). Теплоемкость 600-900 Дж\кг*К.

Главным достоинством ферритовых сплавов является наличие повышенного удельного электросопротивления с сочетанием высоких магнитных свойств. Наиболее выгодным будет применение феррита при таких эксплуатационных характеристиках как малое значение индукции и высокие частоты.

При низких значениях частот повышается относительная диэлектрическая проницаемость феррита. При одновременном наличии высокой магнитной проницаемости это может привести к наложению волн друг на друга. Как результат возникает объемный резонанс, при котором вихревые токи увеличиваются в разы, а, следовательно, потери.

Ухудшение магнитных свойств в ферритах происходит по следующим причинам:

  • Механическое воздействие на ферритовый сплав. Образование трещин на поверхности магнитного сердечника может привести к смене знака магнитного поля. Особенно опасны силы, векторы которых направлены параллельно или перпендикулярно линиям магнитного поля.
  • Одновременное наложение постоянного и переменного полей. Происходит наложение частот друг на друга, что в результате увеличивает вероятность образования резонанса.
  • Выход за пределы рабочих температур согласно условиям эксплуатации приводит к возникновению остаточной магнитной проницаемости феррита. Также наблюдается нестабильность магнитных свойств в ферритах при долгом нахождении под воздействием плюсовой температуры.
  • Повышенная влажность может стать причиной изменения в феррите электропроводных свойств, которые, в свою очередь, способствуют увеличению потерь. Из-за этого ферриты, работающие при частоте выше 3 МГц и в условиях высокой влажности, требуют нанесения на их поверхность водоизолирующего материала.
  • Радиационное излучение сильно снижает магнитные характеристики и электрические свойства ферритов, особенно ферритных сплавов на основе марганца и цинка.

Феррит обладает незначительными механическими свойствами. Не отличаются ни прочностью, ни пластичностью.

Модуль упругости составляет в среднем 45 000 МПа. Модуль сдвига ферритовых сплавов 5500 МПа. Предел прочности на растяжение равен 120 МПа. На сжатие 900 МПа. Значение коэффициента Пуансона колеблется в пределах 0,25-0,45.

Виды применения

В силу вышеперечисленных свойств главным потребителем ферритов является радиоэлектроника. Применение определенного сплава феррита ограничивается значением критических частот, выход за пределы которых увеличивает потери и снижает эксплуатационные свойства, в частности магнитную проницаемость. Ферритовые сплавы по свойствам и применению делят на:

  • Общепромышленного применения (400НН,1000НМ, 1500 НМ). По своим магнитным свойствам относятся к ферритам высокой частоты. Магнитная проницаемость ферритовых сплавов колеблется в пределах от 100 до 4000. Такие ферритовые сердечники используются при частоте до 30 МГц. Также в их область применения входит изготовление сердечников магнитных антенн, трансформаторов и прочего оборудования, от которого не требуется повышенные свойства устойчивости к температурам.
  • Термически стабильные. Содержат в себе высокочастотные (20ВН,7ВН) и низкочастотные (1500НМ3, 1500НМ1) типы. Их главные свойства – высокая добротность и стабильная начальная магнитная проницаемость. Кроме того, указанные ферритные сплавы в эксплуатации отличаются такими свойствами как низкий относительный температурный коэффициент магнитной проницаемости. Низкочастотные ферриты нашли применение в работе со слабым полем и частоте до 2,9 МГц, а высокочастотные до 99 МГц. В основном они служат сырьем для броневых сердечников и сердечников для антенн.
  • Ферриты высокопроницаемые (6000НМ1, 6000НМ, 4000НМ). Отличительными свойствами являются повышенная начальная магнитная проницаемость при низкой частоте и высокая добротность. Вышеперечисленные ферритные сплавы применяют при изготовлении статических преобразователей и делителей напряжения. Магнитные свойства ферритов позволяют заменить в данных приборах дефицитные пермаллоевые сердечники.
  • Для телевизионной аппаратуры (4000НМС, 3500НМС1). Ферритовые сплавы этой категории имеют низкие потери при частоте, используемой в телевизионном оборудовании. Также среди их свойств выделяется повышенная магнитная индукция при высоком значении температур. Из данных ферритов изготавливают сердечники трансформаторов и сердечники спецузлов телевизора.
  • Ферриты импульсных трансформаторов (300ННИ, 300ННИ1). Особенность данных сплавов в их использовании – работа в режиме импульсного намагничивания. Главное применение ферритов – изготовление сердечников импульсных трансформаторов.
  • Для производства контуров радиотехнических приборов (10ВНП, 35ВНП). Своим применением в радиоэлектронике они обязаны таким свойствам как высокий показатель коэффициента перестройки по частоте и низким потерям при работе на частотах до 250 МГц. Основное их техническое применение – это сердечники контуров, настраиваемые подмагничиванием.
  • Для широкополосных трансформаторов. Объединяющие свойства  – высокая добротность, низкое значение нелинейных искажений и более высокая точка Кюри. Самые популярные ферриты данной категории в использовании – 200ВНС, 90ВНС и 50ВНС. Их свойства позволили найти такое применение как изготовление сердечников широкополосных трансформаторов.
  • Для магнитных головок. Ферритовые сплавы данной категории производят на основе никель-цинковых ферритов: 500НТ и 1000НТ. Воздействие сердечников с носителем информации требует наличия в ферритах минимальной поверхности пористости.
  • Для магнитного экранирования. Сюда относятся 2 марки: 800ВНРП и 200ВНРП. Ферритные сердечники данных сплавов применяют в радиопоглощающих приборах для устранения радиопомех.
  • Для датчиков (1200НН, 1200НН1 и 1200НН2). Отличительные свойства приведенных ферритов – это повышенная термочувствительность и высокая магнитная проницаемость. Это позволило найти им применение при производстве термореле.

Ценообразование

Стоимость феррита определяется следующими свойствами:

  • Характеристики размера и формы. Сердечники 80х40х25 обойдутся примерно в 200 рублей.
  • Вид применения сердечника. Ферритные поглотители для камер стоят порядка 1000 – 4000 руб. Ферритовая игла для граммофона – около 400 руб.
  • Тип сплава, использующийся в ферритах. в феррите дорогостоящих металлов, таких как никель, повышает его стоимость.

Источник: https://prompriem.ru/stati/ferrit.html

Ферриты (оксиферы)

Ферриты

Феррит – материал, представляющий собой соединение оксида железа и оксидов ферримагнетиков. Он имеет формулу MFe2O4. Это химическое соединение обладает кубической кристаллической решеткой и активно используется в радиоэлектронике, благодаря большому удельному сопротивлению и наличию магнитных свойств.

Основные свойства

Феррит обладает следующими физическими характеристиками:

  1. Плотность: 4000 до 5000 кг/м3 (параметр определяется маркой железного сплава).Теплоемкость вещества: до 890 Дж/кг×К.
  2. Средний модуль упругости: 5500 МПа.
  3. Предел прочности на сжатие равняется 850 МПа, на растяжение – 110 МПа.
  4. Коэффициент Пуансона: до 0,4.
  5. Модуль Юнга: до 21 000 000 кПа.

Одним из основных физических свойств феррита является высокое электрическое сопротивление и магнитная проницаемость, что обуславливает низкие энергетические потери в высокочастотных зонах.

Основным фактором, влияющим на этот параметр, является большая концентрация двухвалентных ионов железа. При повышенном количестве частиц Fe2+ увеличивается проводимость железного сплава и понижается его энергия активации.

Высокое содержание двухвалентных ионов железа также приводит к снижению зависимости металла от различных свойств среды и состояния намагниченности.

Выделяют следующие механические свойства феррита:

  1. Металлы склеиваются при помощи клея марки БФ-4 и нарезаются инструментами, изготовленными из алмаза.
  2. Материал поддается полировке и шлифовке.
  3. При больших механических нагрузках (соударениях, вибрациях) появляются дополнительные напряжения в сердечниках, что приводит к возникновению трещин и иных внешних дефектов.

Главными отличительными особенностями феррита являются его магнитные свойства. Они зависят от величины магнитной проницаемости железной модификации и тангенса угла потерь. На эти характеристики оказывают влияние интенсивность резонансных явлений и механические напряжения. Для сохранения магнитных свойств материала нужно ограничить величину физических нагрузок на поверхность металла.

На магнитные свойства феррита воздействуют следующие факторы:

  1. Влияния высоких или низких температур: при термообработке железного сплава также могут произойти изменения магнитной проницаемости.
  2. Увлажнение металла: на средних и высоких частотах увеличиваются магнитные потери металла, что связано с изменением электропроводности материала. По этой причине рекомендуется герметизировать металл во время работы с влажными поверхностями.
  3. Радиационное облучение: воздействие интегральных потоков нейтронов с высокой интенсивностью приводит к изменению электромагнитных характеристик железного сплава.
  4. Слияние двух магнитных полей: происходит наложение частот, что повышает вероятность возникновения явления резонанса.

Для большей части железных модификаций характерна нестабильность магнитной проницаемости при длительном хранении металла в теплых или холодных помещениях.
Ферриты являются полупроводниками и диэлектриками.

Их электрические свойства зависят от процессов ионного обмена и температурного режима. При высоких температурах возрастает подвижность отрицательных зарядов химического соединения, что приводит к изменению электропроводности и удельного сопротивления феррита.

Электрические свойства могут также изменяться при разных концентрациях ионов железа.

В процессе теплового движения частицы Fe2+ оказывают влияние на проводимость материала и энергию активации электропроводности. В результате снижается толщина энергетических барьеров, препятствующих перемещению отрицательных частиц из 1 иона в другой.

На многие параметры феррита влияют условия изготовления. Выделяют следующие способы производства этого материала:

  1. При помощи ферритовых порошков: железный сплав изготавливается из специальных химических соединений. Растворы железа осаждают из специальных солей. Полученное вещество смешивают с гидратами щелочей. Смесь сушится и ферритизируется. Этот метод изготовления чаще всего используется в металлургии, что связано с большим эксплуатационным сроком ферритовых порошков.
  2. Окисная технология: представляет собой смешение и помол окислов металлов. Главными преимуществами этого способа являются безотходность и экономичность. В этом случае для изготовления феррита необходимо минимальное количество сырья. Во время смешивания окисей металлов в атмосферу не выделяются вредные химические соединения. Недостатком этой технологии является трудность измельчения окислов при получении однородных смесей.
  3. Химические методы: предоставляют возможность изготавливать высокочастотные ферриты без применения этанола и иных соединений с высокой воспроизводимостью структурных параметров.
  4. Термическое разложение: требуется сернокислые соли, где содержится кристаллизационная вода. В них добавляется небольшое количество H2O. Полученная смесь разлагается на окислы (их температура составляет не менее 900°С. Преимуществом этого способа является однородность распределения всех компонентов при термообработке.
  5. Бездиффузионный(шенитный) способ: для изготовления железных модификаций необходимы ферритные порошки, состоящие из растворов шенита. Для предельной гомогенизации вещества проходят процесс кристаллизации и ферритизации. Стабильность протекания этих процессов обуславливается состоянием поверхностных частиц шенита и доли полиморфных модификаций.

Для производства качественного феррита необходимо соблюдать основные условия изготовления и использовать высокоактивные ферритовые соединения или порошки.

Химический состав

Ферриты являются смесью оксидов железа и иных легирующих металлов, включающих в себя медь, цинк, магний, ниобий, кобальт, никель, литий и марганец. Средняя молярная масса вещества зависит от процентного содержания химических элементов в растворе. Она равняется 152 – 160 г/моль. В зависимости от химического состава и структуры выделяют следующие разновидности феррита:

  1. Никель-цинковые: отличаются высоким электрическим сопротивлением и чаще всего используются при высоких диапазонах частот: 500 КГц до 200 МГц.
  2. Магний-марганцевые: характеризуются низкой магнитной проницаемостью и чаще всего применяются для работы с частотами звука.
  3. Марганцево-цинковые: имеют низкие потери на вихревых токах и располагают высокими показателями диэлектрической проницаемости.
  4. Иттриевые: обладают небольшими диэлектрическими потерями. Они устойчивы к ферромагнитному резонансу.
  5. Литиевые: располагают высокими показателями намагниченности насыщения и термической стабильности.

Химический состав феррита определяется эксплуатационными характеристиками материала и сферой его применения.

Классификация ферритов

Ферриты подразделяются на 3 основных класса:

  1. Железные сплавы с гарантированными потерями и высокой магнитной проницаемостью.
  2. Материалы с гистерезисом (зависимости намагниченности от напряжений внешнего поля) в виде прямоугольной петли.
  3. Модификации железа с уникальными свойствами.

В зависимости от основных параметров металла были созданы марки ферритов:

  • 2000 H: никель-цинковый феррит с магнитной проницаемостью 2000 Гн/м;
  • 100 ВНП: железный сплав с магнитной проницаемостью 100 Гн/м, состоящий из никеля, цинка и меди;
  • 6000 HM1: материал из магния и цинка, магнитная проницаемость составляет 6000 Гн/м;
  • 300 П: железная модификация с магнитной проницаемостью 300 Гн/м, состоящий из магния, марганца и калия.

В соответствии с марками металлов была создана классификация ферритов, демонстрирующая виды применения данной модификации железа:

  1. Общепромышленные: отличаются высокой магнитной проницаемостью и применяются при частоте до 25 МГц. При его изготовлении применяют чистый феррит, представляющий собой частицы ферритовой пыли. Используются в большинстве отраслей радиоэлектроники.
  2. Термостойкие: металлы с устойчивой магнитной проницаемостью, не изменяющейся при резком перепаде температур. Они используются при производстве антенных и сердечников.
  3. Высокопроницаемые: благодаря повышенной магнитной проницаемости, они применяются при низких частотах. Используются при изготовлении комплектующих для статических преобразователей.

Отдельные марки ферритов могут применяться для производства определенной аппаратуры. В ионных аккумуляторах может использоваться только феррит цинка, являющийся магнитомягким металлом. Для магнитных головок изготавливают железные сплавы на основе никель-цинковых материалов.

При сборке датчиков и специальных детекторов используют ферриты с высокой термочувствительностью. Ферриты, способные работать при импульсном намагничивании, используются во время производства трансформаторов.

Модификации железа, имеющие низкие потери при частоте, могут применяться в телевизионных приборах.

Источник: https://stankiexpert.ru/spravochnik/materialovedenie/ferrity.html

Феррит твердый раствор внедрения углерода и других элементов в α-железе

Ферриты

Фазовый компонент, или фаза, представляет собой однородную часть системы определенного состава и агрегатного состояния, отделенную от остальной части системы поверхностью раздела.

В отличие от фазового компонента, структурный компонент представляет собой однородную или квазиоднородную часть системы, состоящую из 1 или более фаз, и в силу особенностей механизма ее образования имеет одинаковый усредненный химический состав и регулярную структуру по всему объему этого компонента.

  • К фазовым компонентам системы железо-углерод относятся жидкий раствор (L), твердый раствор: феррит (α), аустенит (γ), горячий феррит (δ), цементит и графит (G).

Жидкий раствор на основе железа и углерода представляет собой раствор углерода в расплаве iron. At при гораздо более высокой температуре, чем Ликвидус (в основном при температурах выше 1700°C), жидкость представляет собой статистически неравномерный раствор со статистически плотной упаковкой.

Железо-серебристо-белый металл. В настоящее время имеющееся чистое железо содержит 99,999% железа и 99,8-99,9% железа.

Температура плавления железа составляет 1539°С.

Железо известно для 2 полиморфных модификаций α и γ. Альфа-железо существует при температурах ниже 910°C и выше 1392 ° C(Рис. 1). В диапазоне температур 1392-1539°C α-железо часто называют δ-железом.

Структура феррита

кристаллическая решетка α-железа представляет собой объемно-центрированный куб с циклом решетки 0,28606 Нм. При температуре 768°с α-железо является магнитным (ферромагнетизм).Критическая точка (768°С), соответствующая магнитному преобразованию, то есть переходу из ферромагнитного состояния в парамагнитное, называется точкой Кюри и обозначается символом A2.

Критические точки α-γ превращения при 910°с (Рис.1) представлены соответственно Ac3 (при нагревании) и Ar3 (при охлаждении). Критические точки α-γ превращения железа при 1392 ° С называются Ac4 (при нагревании) и Ar4 (при охлаждении).

кристаллическая решетка γ-железа представляет собой граневой куб с периодом 910 Нм при температуре 0,3645°С. плотность железа выше, чем у железа, 8,0-8,1 г / см3. при преобразовании α-γ происходит сжатие. Эффект объемного сжатия составляет около 1%.

Углерод-неметаллический элемент.

Углерод полиморфен. В нормальных условиях это форма модификации графита, но она также может присутствовать в виде квазистабильной модификации алмаза.

Углерод растворим в железе в жидком и твердом состоянии, он может быть в виде химических соединений-цементита, а также в виде высокоуглеродистых сплавов и графита.

Растворимость

В то же время следующие структурные компоненты образуют сплавы: феррит, аустенит, цементит, перлит и редебилит.

Феррит представляет собой твердый раствор углерода и других примесей в α-железе.
Потому что растворимость углерода в железе очень мала(0,006… 0.03%), это почти чистое железо.

Феррит устойчив к температуре 911°с, твердость и прочность очень низкие, но благодаря своей высокой пластичности он достаточно деформируется в холодных условиях(штамповка, валок, растяжение).

Чем больше феррит из железоуглеродистых сплавов, тем выше пластичность сплава.

  • Аустенит представляет собой твердый раствор углерода и других примесей, содержащихся в γ-железе. конечная растворимость углерода в Y-железе составляет 2,14%.Конечная растворимость углерода в железе составляет 2,14%.Особенностью аустенита является то, что он может существовать в железоуглеродистых сплавах только при высоких температурах(1539-727°с).Пластичность аустенита сравнима с ферритом, но твердость превышает его примерно в 2 раза.

Цементит представляет собой соединение железа и карбида-карбид железа Fe3C. цементит содержит 6,67% углерода. Цементит имеет сложную ромбическую решетку, в которой атомы плотно упакованы. Температура плавления цементита составляет около 1600°С.

содержание углерода в цементите составляет 6,67%, что делает его самым твердым и хрупким структурным компонентом железоуглеродистого сплава. Цементит обладает высокой твердостью и не является пластичным.

Чем больше цементита в железоуглеродистом сплаве, тем он тверже и тем более хрупким он будет.

Перлит представляет собой механическую смесь феррита и цементита, которая подразделяется на пластинки и гранулярность в зависимости от формы кристалла цементита и выглядит как небольшое зерно, пластинчатое или круглое.

  • Эта смесь похожа на эвтектику, но в отличие от эвтектики, она называется эвтектоидной, потому что образовалась при разложении твердого раствора, а не при кристаллизации.

Кривые нагрева и охлаждения

Красный Бритт представляет собой эвтектическую смесь аустенита и цементита. Температура образования редебрита составляет 1147°C. Он может существовать до температуры 727 ° С, и если он падает ниже этой температуры, аустенит разлагается на перлит и цементит.

Структура феррита представляет собой относительно высокоугольный многогранный Кристалл, разделенный тонкой высокоугольной границей. Структура феррита обычно выявляется при его травлении в растворе азотной кислоты.

Ферриты до температуры точки Кюри (770°C) очень ферромагнитны и проводят тепло и ток well. In в равновесном состоянии феррит является пластичным (относительное удлинение около 40%), с низкой прочностью и твердостью (HB = 65-130, в зависимости от размера частиц).

Феррит может принимать форму различных структурных состояний в структуре железоуглеродистых сплавов в зависимости от характера протекающего фазового превращения.

Феррит (Ф) как основа структуры сплава.

  • Феррит как 2-я (избыточная) фаза расположен вдоль границы колонии перлита. Форма отдельных включений изометрической или игольчатой формы. Феррит, фазовый компонент другого структурного компонента-перлит или феррит-графитовое соосаждение

Кристаллическая решетка

При температурах выше критической точки A4 модификация высокотемпературного δ-феррита стабильна и имеет объемно-центрированную кубическую решетку, аналогичную решетке низкотемпературного α-феррита, но при больших параметрах δ-феррит является парамагнитным.

Реферат на темуНа заказ Образец и пример
Феррит твердый раствор внедрения углерода и других элементов в α-железе углерода в феррите очень мало, оно составляет до 727% при температуре 0,02°С. Благодаря такому низкому содержанию углерода свойства феррита совпадают со свойствами железа (низкая твердость и высокая пластичность).

Аустенит представляет собой твердый раствор углерода в γ-железе. Аустенитная решетка представляет собой гранецентрированный куб (fcc).Атом углерода находится в пустотах большой октаэдрической решетки.

Рефераты по материаловедению

Источник: https://9219603113.com/ferrit-tverdyj-rastvor-vnedreniya-ugleroda-i-drugih-ehlementov-v-zheleze/

Ваш педагог
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: