Гелий

Содержание
  1. Гелий – солнечный газ
  2. Способы получения гелия
  3. Применение гелия
  4. Применение гелия в сварке
  5. Опасность и вред гелия
  6. Хранение и траспортировка гелия
  7. Характеристики гелия
  8. Коэффициенты перевода объема и массы He при Т=15°С и Р=0,1 МПа
  9. Коэффициенты перевода объема и массы He при Т=0°С и Р=0,1 МПа
  10. Гелий в баллоне
  11. Давление гелия в баллоне при различной температуре окружающей среды
  12. Гелий: сферы применения и способы добычи
  13. Классификация месторождений
  14. Гелий в природе
  15. Производство гелия
  16. Как добывается гелий из природного газа
  17. Сферы применения гелия
  18. Хватит ли нам гелия?
  19. ГЕЛИЙ
  20. История открытия
  21. Распространенность в природе
  22. Свойства
  23. Жидкий и твердый гелий
  24. Применение
  25. Химический элемент гелий (He) – строение, свойства и общая характеристика инертного газа
  26. Физические особенности
  27. Химические свойства
  28. Интересные факты о гелии
  29. Немного истории
  30. Получение и применение
  31. Гелий
  32. Свойства гелия
  33. Получение гелия
  34. Использование гелия

Гелий – солнечный газ

Гелий
Гелий химический элемент, атомный номер 2, атомная масса 4,0026, относится к инертным газам, без цвета и запаха. Объемное содержание гелия в воздухе 0,00052%. Гелий значительно легче воздуха, плотность 0,1785 кг/м3 при нулевой температуре и нормальном давлении. Температура кипения -268,9°С.

Потенциал ионизации 25,4 В. Бесцветный, неядовитый, негорючий и невзрывоопасный газ, хорошо диффундирует через твердые тела. Химическая формула – He.

Впервые гелий был обнаружен во время солнечного затмения 1868 г.

астрономы впервые применили спектроскопию для исследования атмосферы Солнца.

24 октября 1868 г.

Французская академия наук получила два сообщения – от Пьера Жюль Сезара Жансена (Pierre Jules Cesar Janssen) из Индии и от Джозефа Нормана Локьера (Joseph Norman Lockyer) из Лондона – об открытии ими в спектре солнечной короны новой ярко-желтой линии, которой впоследствии был присвоен символ D3. Совпадение двух независимых сообщений из разных концов мира свидетельствовало о возможности методами спектроскопии проникнуть в тайны солнечной атмосферы и других далеких звезд.

Вопрос о том, какому веществу отвечает линия D3, долго еще оставался открытым. Было лишь установлено, что в спектрах элементов, известных на нашей планете, пока не обнаружено спектральной линии, подобной ярко-желтой линии D3. Локьер ошибочно считал, что раскаленный газ, излучение которого дает таинственную линию D3, является модификацией водорода, не встречающейся на Земле.

В августе 1871 г. Кельвин заявил, что линия D3 до сих пор не идентифицирована с каким-либо земным элементом. Возможно, что она принадлежит новому веществу, которому Локьер и Жансен предложили дать название гелий (от греческого слова гелиос – солнце).

В 1895 г. Сэр Уильям Рамзай (Sir William Ramsay) изучал газ, выделенный им из минерала клевеита, и в гейслеровой трубке неожиданно обнаружил яркую желтую линию.

Выдающийся спектроскопист того времени Уильям Крукс (William Crookes) определил длину волны новой линии (5874,9 А) и установил, что это линия D3, на этом основании Рамзай сообщил (23 марта 1895 г.

) об открытии им гелия на Земле.

Такова история открытия важнейшего представителя группы инертных газов, который сначала был обнаружен в солнечной атмосфере, а затем (через 27 лет) – на Земле.

Вскоре гелий был обнаружен в других минералах и горных породах, содержащих уран.

Наличие гелия в земной коре позволило сделать вывод о его содержании в атмосфере, хотя многие ученые утверждали, что этот легкий газ, выделяющийся из земной коры, полностью уносится из атмосферы в космическое пространство.

Вскоре Генрих Кайзер, а затем Зигберт Фридлендер (1896 г.), а также Эдвард Бэли в результате анализа первой выпаренной фракции жидкого воздуха доказали его присутствие в атмосфере.

Способы получения гелия

Гелий получают из гелийсодержащих природных газов, минералов и воздуха. Об этом мы писали в статье о производстве гелия, поэтому здесь не будем повторять написанное.

Применение гелия

В промышленности гелий применяют в меньших масштабах, чем газ аргон. Чаще всего его используют:

  • хладагент – охлаждение сверхпроводящих магнитов в медицинских сканерах МРТ;
  • металлургия – выплавка чистых металлов;
  • подводно-спасательное дело – в составе дыхательных смесей;
  • сварочное производство – защитный газ;
  • в индустрии развлечений – заполнение шариков.

Применение гелия в сварке

В связи с тем, что He примерно в 10 раз легче Ar, что понижает эффективность защиту сварочной ванны при сварке в нижнем положении, но способствует лучшей защите при сварке в потолочном положении, поэтому расход гелия при сварке увеличивается в 1,5-3 раза.

Применяют его в основном при сварке неплавящимся электродом химически чистых и активных материалов и сплавов, а также сплавов на основе алюминия и магния.

Гелий становится предпочтительнее аргона при необходимости дополнительной защиты швов при сварке в потолочном положении. Особенно при сварке титановых сплавов и других химически активных металлов, поглощающих азот и кислород не только в расплавленном состоянии, но и в твердом при нагреве выше определенной температуры.

Однако не только защитные свойства Ar и He различны. Различными являются и характеристики дуги в этих газах. Так, при одинаковой силе тока напряжение дуги в гелии значительно выше, чем дуги в аргоне.

Такая дуга имеет большую проплавляющую способность и менее концентрирована (создает иную форму проплавления, более равномерную, в то время как дуга в аргоне при сварке, например, титановых сплавов вольфрамовым электродом дает большое проплавление в центре и значительно меньшее по краям ванны).

Перепад напряжения в столбе дуги в гелии больше, чем в аргоне, поэтому изменение длины дуги заметнее сказывается на напряжении и общей ее теплоэффективности. Для более развернутой информации обязательно прочитайте статью о сварочной дуге в инертных газах.

Форма шва и проплавление для различных защитных газов

В зависимости от применения того или иного газа меняется и поверхностное натяжение на границе металл-газовая фаза. Так, для хромоникелевых сталей аустенитного класса поверхностное натяжение жидкого металла при сварке в He заметно меньше, чем в Ar.

Это сказывается и на формировании поверхности швов.

Более плавные переходы от шва к основному металлу, при сварке в гелии, имеют место и для других металлов, в частности титановых сплавов и в ряде случаев оказывают влияние на некоторые характеристики работоспособности сварных соединений.

Чаще всего He используют для образования инертных газовых смесей c Ar. Обладая большей плотностью, чем гелий, такие смеси лучше защищают металл сварочной ванны от воздуха и увеличивают производительность сварки в целом. В смеси в полной мере реализуются преимущества обоих газов:

  • аргон – обеспечивает стабильность горения дуги;
  • гелий – обеспечивает высокую степень проплавления.

Опасность и вред гелия

Гелий не относится к ядовитым и токсичным газам, поэтому в малых количествах он не является опасным.

Он может оказать действие как удушающий газ (асфиксант) только в том случае, если в результате утечки уровень кислорода окажется ниже допустимой концентрации. Но утечку гелия очень легко выявить т.к.

за счет сжимания ых связок у человека меняется голос. Мы все знаем данный комический и мультяшный эффект, когда при вдыхании гелия из шарика голос становится более высоким.

Гелий является опасным, только в случае снижения уровня кислорода в окружающей среде ниже допустимой концентрации.

Хранение и траспортировка гелия

Транспортируют и хранят гелий в газообразном состоянии в стальных баллонах при давлении 15 МПа или в сжиженном состоянии при давлении менее 0,2 МПа.

Баллоны с гелием окрашены в коричневый цвет с надписью белыми буквами «ГЕЛИЙ». Баллоны должны соответствовать требованиям ГОСТ 949.

Методы определения доли примесей и условий поставки регламентируются ГОСТ 20461.

Характеристики гелия

Характеристики He указаны в таблицах ниже:

Коэффициенты перевода объема и массы He при Т=15°С и Р=0,1 МПа

Масса, кгОбъемГаз, м3Жидкость, л
0,16711,336
0,1250,7491
15,9888,000

Коэффициенты перевода объема и массы He при Т=0°С и Р=0,1 МПа

Масса, кгОбъемГаз, м3Жидкость, л
0,17811,425
0,1250,7021
15,6188,000

Гелий в баллоне

НаименованиеОбъем баллона, лМасса газа в баллоне, кгОбъем газа (м3) при Т=15°С, Р=0,1 МПа
He401,0026,0
  • Сколько литров гелия в баллоне? Ответ: 40 литров
  • Сколько гелия в баллоне 40л? Ответ: 6,5 м3 или 10,85 кг
  • Сколько весит баллон с гелием 40 литров Ответ: 58,5 кг – масса пустого баллона из углеродистой стали согласно ГОСТ 949; 1,002 – кг масса гелия в баллоне;Итого: 58,5 + 1,002 = 59,502 кг вес баллона с аргоном.

Давление гелия в баллоне при различной температуре окружающей среды

Температура окружающей средыДавление в баллоне, МПа
-4012,2
-3012,7
-2013,2
-1013,7
014,3
+1014,7
+2015,3
+3015,8

Источник: https://weldering.com/geliy-solnechnyy-gaz

Гелий: сферы применения и способы добычи

Гелий
10.04.2016

Гелий — это химический элемент, который представляет собой бесцветный газ без запаха и вкуса. Впервые был замечен при спектроскопии света (расщеплении света на лучи разного цвета), источаемого солнцем во время затмения.

В 1868 году французский астроном Пьер Жюль Жансен вместе с английским коллегой Джозефом Норманом Локьером смогли наблюдать новую светло-желтую линию, до этого неизвестную науке.

Как выяснилось, так отобразился ранее не известный элемент, который позже назвали гелием.

По распространению во вселенной гелий находится на втором месте после водорода, но на нашей планете этого газа не много. Лишь в 1895 году химик из Шотландии Уильям Рамзай выделил гелий из минерала клевеита.

Классификация месторождений

На сегодняшний день столь редкий элемент добывают из природного газа. Оренбургский газоперерабатывающий завод занимается этим в России.

В найденных месторождениях находится всего 0,055 % гелия в природном газе, что относит этот источник к «бедному». «Богатыми» месторождениями можно называть те, в которых процент искомого вещества составляет не ниже 0,5 %.

Если доля гелия в газе составляет 0,1–0,5 %, то такое месторождение носит имя «рядовое».

Гелий в природе

Земной гелий чаще всего образуется при распаде урана-235, тория и урана-238, а также нестабильных продуктов их распада. Газ медленно накапливается в земной коре. За миллионы лет одна тонна гранита, в которой содержится 10 г тория и 2 г урана, вырабатывает всего 0,5 см3 (или 0,09 мг) элемента.

Лишь немногие минералы, богатые торием и ураном, могут похвастаться высоким содержанием гелия. Кроме того, большая часть минералов подвергается выветриванию, перекристаллизации и другим процессам, в результате которых гелий уходит.

Высвободившиеся пузырьки могут раствориться в подземных водах или выйти в атмосферу через трещины и поры в минералах.

Производство гелия

На нашей планете всего насчитывается до 41 млрд кубометров гелия. Большое количество месторождений расположено в Китае, США, России, Алжире.

Всего в мире человечеством добывается приблизительно 175 млн кубометров гелия в год, из которых в России производится не более 5 млн м³.

Вызвано это тем, что самые богатые месторождения данного газа находятся в Сибири и на Дальнем Востоке, где производство пока что не налажено.

Как добывается гелий из природного газа

Добыча гелия из природного газа состоит из двух этапов. Вследствие проведения низкотемпературной конденсации можно получить гелиевый концентрат, в котором необходимого вещества уже имеется 80 %. Далее необходимо очисть полученный концентрат от примесей (методы зависят от элементов): водорода, аргона, неона, азота, метана.

Сферы применения гелия

Гелий имеет много полезных свойств, среди которых электропроводимость и теплопроводность. Во многих сферах требуются именно эти свойства. Газ часто применяется в авиации, ракетостроении, атомной и электронной промышленности, в медицине.

Впервые гелий применили в Германии в 1915 году, им стали наполнять дирижабли. Очень быстро этот легкий и негорючий газ стал незаменимым наполнителем для воздухоплавательных аппаратов.

В 30-х годах интерес к дирижаблестроению спал, что повлекло за собой сокращение объемов производства гелия, правда лишь на короткое время, так как на элемент начали обращать внимание химики, металлурги и машиностроители.

Гелий очень легкий, что позволяет применять его при погружении в воду или для воздухоплавания (воздушные шары, дирижабли).

Данный газ не токсичен, его можно вдыхать без вреда для здоровья. Именно по этой причине из него часто изготовляют различные дыхательные смеси.

Это могут быть составы для проведения кессонных работ или подводного плавания с аквалангами. Такая сфера применения газа связана с его низкой реактивностью и растворимостью в воде и крови.

В последнее время гелий стали часто применять в атомной промышленности: из данного вещества получается неплохой теплоноситель для атомных реакторов. Нашел свою нишу газ и в металлургии: из гелия можно создать защитную среду при сварке металлов.

Гелий, позволяющий получать сверхнизкие температуры, выполняет роль охлаждающего агента в Большом адронном коллайдере. Его используют при создании аппаратов МРТ, ракет «Аполлон» и спутниковой аппаратуры. Его применяют в качестве инертного газа при производстве оптоволокна и полупроводников. Газовые лазеры с гелием используют на кассах в супермаркетах для сканирования штрих-кодов.

Благодаря низкой плотности газ используется в качестве наполнителя для шаров, которые применяют как для декора, так и в исследовательских целях. Например, в метеорологии гелиевые шары нужны для того, чтобы поднять измерительные приборы на нужную высоту.

Хватит ли нам гелия?

По прогнозам ООО «Газпром ВНИИГАЗ», для всей индустрии понадобится около 238–312 млн кубометров уже к 2030 году, что значительно превышает предполагаемый объем добычи (213–238 млн кубометров).

Естественно возникнет дефицит, избежать который можно только с помощью повышения уровня производства гелия по всему миру.

Правительство Российской Федерации уже сейчас предпринимает необходимые меры по строительству центров производств столь важного ресурса в Чаядинском, Ковытинском и в других регионах Сибири.

Источник: https://geliy24.ru/stati/gelij-sfery-primeneniya-i-sposoby-dobychi

ГЕЛИЙ

Гелий
статьи

ГЕЛИЙ, He (helium), химический элемент из семейства благородных (инертных) газов He, Ne, Ar, Kr, Xe, Rn, составляющих VIIIA подгруппу в периодической системе элементов, или, как ее еще называют, нулевую группу.

История открытия

Гелий впервые был идентифицирован как химический элемент в 1868 П.Жансеном при изучении солнечного затмения в Индии. При спектральном анализе солнечной хромосферы была обнаружена ярко-желтая линия, первоначально отнесенная к спектру натрия, однако в 1871 Дж.Локьер и П.

Жансен доказали, что эта линия не относится ни к одному из известных на земле элементов. Локьер и Э.Франкленд назвали новый элемент гелием от греч. «гелиос», что означает солнце. В то время не знали, что гелий – инертный газ, и предполагали, что это металл. И только спустя почти четверть века гелий был обнаружен на земле.

В 1895, через несколько месяцев после открытия аргона, У.Рамзай и почти одновременно шведские химики П.Клеве и Н.Ленгле установили, что гелий выделяется при нагревании минерала клевеита. Год спустя Г.Кейзер обнаружил примесь гелия в атмосфере, а в 1906 гелий был обнаружен в составе природного газа нефтяных скважин Канзаса. В том же году Э.Резерфорд и Т.

Ройдс установили, что a-частицы, испускаемые радиоактивными элементами, представляют собой ядра гелия.

Распространенность в природе

гелия в мировом пространстве составляет 28% (второе место после водорода). Гелий – основной компонент звездной материи. В результате углеродного цикла (сложная цепь ядерных реакций), впервые изученного Х.Бете в 1939, водород в звездном веществе превращается в гелий, при этом происходит значительное выделение энергии (см.

также ЯДЕРНЫЙ СИНТЕЗ). В земной атмосфере гелий составляет всего 0,0005% об., так как он чрезвычайно легок и слабо удерживается гравитационным полем земли. Гелий образуется при распаде тяжелых радиоактивных элементов, находящихся в расплавленном земном ядре, и медленно диффундирует через земную мантию.

Тепловая энергия, выделяющаяся при ядерных процессах, поддерживает ядро земли в расплавленном состоянии. Природный метан, добываемый из скважин, содержит ок. 1,75% гелия и 0,5% CO2. После удаления CO2, глубокого охлаждения природного газа до –185° C и сжатия образуется жидкий метан, а в газовой фазе остаются гелий и азот.

Метод глубокого охлаждения позволяет получать гелий чистотой 98% и выше.

Свойства

Гелий имеет одну-единственную электронную оболочку, занятую двумя электронами, т.е.

его оболочка полностью заполнена электронами, которые испытывают сильное притяжение ядра, а значит, очень устойчивы; поэтому гелий не вступает в химические реакции, не образует химические соединений и не имеет степеней окисления.

Гелий – бесцветный одноатомный газ без запаха; он не вступает в реакции ни с одним химическим элементом, и его атомы не соединяются даже между собой. Наиболее распространенный изотоп 4He содержит в ядре два протона и два нейтрона, поэтому его массовое число равно 4.

Более редкий изотоп 3He с одним нейтроном был открыт в 1939 Л.Альваресом и Р.Кернегом. 3He составляет 10–5% гелия, находящегося в природном газе, добываемом из скважин. 3He получается в ядерных реакциях при распаде трития (3H-изотоп водорода). Гелий – необычное вещество, по свойствам он близок к состоянию идеального газа

СВОЙСТВА 4He
Атомный номер2
Атомная масса4,0026
Плотность, г/см30,178
Температура плавления, °С–272,2 (при 26 атм)
Температура кипения, °С–268,93
Критическая температура, К5,25
Критическое давление, МПа0,23
в земной коре, %0,0000003
Степени окисления

Жидкий и твердый гелий

Жидкий гелий обладает рядом уникальных свойств; он имеет самую низкую температуру кипения: 4He кипит при 4,22 K, а 3He – 3,19 K. Это свойство гелия используют для создания низких температур.

Гелий – единственное вещество на земле, которое при нормальном давлении не кристаллизуется вблизи абсолютного нуля, что объясняется слабым межатомным взаимодействием и квантовыми свойствами. Жидкий гелий бесцветен, очень текуч и имеет очень низкое поверхностное натяжение. Изотопы гелия в жидком состоянии сильно различаются.

Так, 4He имеет две формы: при температурах выше 2,18 K существует 4He, а ниже 2,18 K происходит необычный переход (фазовый переход второго рода) в 4He-II. Если пустой стеклянный сосуд погрузить в 4He-II, то жидкость будет медленно подниматься вверх по стенкам и перетекать внутрь до выравнивания уровней жидкости снаружи и внутри.

Если сосуд приподнять, то процесс пойдет обратно до нового выравнивания уровней жидкостей. Это – пленочное движение; оно характерно только для 4He-II. Другое аномальное свойство 4He-II – способность жидкости перетекать из области более низких температур в область более высоких.

4He-II обладает сверхтекучестью (явление сверхтекучести открыл П.Л.Капица в 1938) – свойством, известным только для жидкого гелия. Явление сверхтекучести объясняется на основе двухжидкостной модели.

Согласно ей, 4He-II состоит из двух полностью взаимопроникающих жидкостей – нормальной и сверхтекучей; последняя является идеальной жидкостью и не испытывает сопротивления при протекании через узкие капилляры. Согласно теории, в 4He-II существуют необычные температурные волны (второй звук). Объяснение аномалий 4He-II дается на основе представлений квантовой механики.

Жидкие 3He и 4He называются квантовыми жидкостями. 4He не имеет ядерного спина, а у 3He он равен 1/2 в единицах постоянной Планка. Удивительное различие состоит также в том, что 4He-II – сверхтекучая жидкость, а сопротивление текучести 3He резко возрастает с уменьшением температуры.

Гелий-3 становится, однако, сверхтекучим при температуре примерно 0,001 К, как было открыто в 1972. Это явление аналогично явлению сверхпроводимости, которая рассматривается как сверхтекучесть «электронной жидкости» (см. также СВЕРХПРОВОДИМОСТЬ). В 3He обнаружен новый тип звука при очень низких температурах, нулевой звук, предсказанный Л.Д.

Ландау и относящийся к волнам, характерным для ионизованных газов (плазмы). См. также СВЕРХТЕКУЧЕСТЬ.

Растворы изотопов гелия также необычны. Ниже 0,9 K раствор спонтанно делится на две части, образуя раствор, обогащенный 3He и текущий над раствором, обогащенным 4He. 6% 3He растворимы в 4He, но 4He не растворяется в 3He при абсолютном нуле.

Твердый гелий можно получить сжатием 4He до 25 атм или 3He до 34 атм при низких температурах. Твердый гелий – кристаллическое прозрачное вещество, причем границу между твердым и жидким гелием трудно обнаружить, так как их рефракции близки.

Применение

Гелий является важным источником низких температур. При температуре жидкого гелия тепловое движение атомов и свободных электронов в твердых телах практически отсутствует, что позволяет изучать многие новые явления, например сверхпроводимость в твердом состоянии.

Газообразный гелий используют как легкий газ для наполнения воздушных шаров. Поскольку он негорюч, его добавляют к водороду для заполнения оболочки дирижабля.

Так как гелий хуже растворим в крови, чем азот, большие количества гелия применяют в дыхательных смесях для работ под давлением, например при морских погружениях, при создании подводных тоннелей и сооружений.

При использовании гелия декомпрессия (выделение растворенного газа из крови) у водолаза протекает менее болезненно, менее вероятна кессонная болезнь, исключается такое явление, как азотный наркоз, – постоянный и опасный спутник работы водолаза. Смеси He–O2 применяют, благодаря их низкой вязкости, для снятия приступов астмы и при различных заболеваниях дыхательных путей.

Гелий используют как инертную среду для дуговой сварки, особенно магния и его сплавов, при получении Si, Ge, Ti и Zr, для охлаждения ядерных реакторов. Другие применения гелия – для газовой смазки подшипников, в счетчиках нейтронов (гелий-3), газовых термометрах, рентгеновской спектроскопии, для хранения пищи, в переключателях высокого напряжения.

В смеси с другими благородными газами гелий используется в наружной неоновой рекламе (в газоразрядных трубках). Жидкий гелий выгоден для охлаждения магнитных сверхпроводников, ускорителей частиц и других устройств.

Необычным применением гелия в качестве хладагента является процесс непрерывного смешения 3He и 4He для создания и поддержания температур ниже 0,005 K.

Источник: https://www.krugosvet.ru/enc/nauka_i_tehnika/himiya/GELI.html

Химический элемент гелий (He) – строение, свойства и общая характеристика инертного газа

Гелий

Уникальное в своем роде вещество считается одним из самых распространенных во всей Вселенной, уступая пальму первенства в своем объеме только водороду, ведь его доля составляет около 23 процентов от общей массы этого безграничного пространства. Близкие к рекордным показатели демонстрируют и другие физические свойства гелия, которые стоит рассмотреть более подробно.

Физические особенности

Химический элемент относят к практически полностью инертным газам, он не является токсичным и не имеет вкуса и запаха.

Одиночное строение атома гелия остается таковым при любых условиях, чего не скажешь о других его характеристиках, зависящих от атмосферного давления, температурного режима и многих других параметров.

Самый легкий идеальный газ после водорода, гелий обладает следующими физическими свойствами:

  • Молярная масса атома газа составляет 4,002601 грамма на моль. Что касается молярного объема, то этот показатель равен 31,81 сантиметра кубических на моль, тогда как молярная теплоемкость составляет 20,79 Дж/Кмоль.
  • Плотность вещества напрямую зависит от температурного режима, соответствуя 0,147 грамма на сантиметр кубический при падении столбика термометра ниже отметки в минус 270 градусов Цельсия и 0,000117846 градуса при нагревании до плюс 20 градусов и выше.
  • Температура кипения у гелия является наиболее низкой, если сравнивать его с любым другим химическим элементом. Так, вещество имеет свойство закипать при температуре, равной 4,2152 Кельвина, что эквивалентно минус 268,94 градуса Цельсия.
  • Температурный режим плавления соответствует 0,95 Кельвина или минус 272,2 градуса Цельсия при давлении, равном 2,5 МПа. При этом удельная теплота плавления составляет 0,0138 килоДжоуля на моль при удельной теплоте испарения 0, 0829 кДж/моль.
  • Получение вещества в твердом виде становится возможным только при атмосферном давлении выше 25 атмосфер, тогда как при любых других показателях (даже нулевых) он не переходит в эту фазу.
  • Гелий, найденный в природных условиях, всегда состоит из двух изотопов стабильного типа, один из которых имеет высокий процент распространения, близком к сотне, тогда как другой встречается гораздо реже, причем в совершенно разных естественных источниках (до 0,00014%). Помимо прочего, науке известны еще как минимум 6 радиоактивных гелиевых изотопов искусственного происхождения.

Стоит отметить, что для качественного определения вещества сегодня используется анализ эмиссионного спектра излучения, тогда как для количества применимым остается хроматографическое и масс-спектрометрическое тестирование. Кроме того, актуальными являются простейшие методы идентификации, подразумевающие измерение таких основных параметров, как плотность, молярная масса и теплопроводность.

Гелий в своем газообразном состоянии очень тяжело растворяется в воде (гораздо сложнее, чем любой другой газ).

Так, в литре воды, температура которой составляет 20 градусов Цельсия, объем растворимого газа составляет не более 8,8 миллилитра из 100.

Еще худшую растворимость можно наблюдать в этиловом спирте, так как ее показатель не превышает 2,8 мл/л при 15-градусной температуре и 3,2 мл при нагревании этанола до 25 градусов Цельсия.

А вот скорость диффузии гелия превышает актуальный для воздуха показатель в три раза, опережая даже водород, у которого коэффициент проникаемости ниже на 65%. Абсолютным рекордсменом гелий является и по коэффициенту преломления, максимально приближаясь к единице. Эффект Джоуля — Томсона у гелия имеет отрицательное значение в нормальной среде из-за его слишком быстрого охлаждения.

Что касается остывания в процессе дросселирования, то оно становится возможным только при 40 К и нормальном атмосферном давлении.

Если же температура продолжит опускаться, то становится возможным переход гелия из газообразного в жидкое состояние, но только при условии применения охлаждения расширительного типа, обеспечить которое реально только с помощью специального преобразователя относительной потенциальной энергии в механическую.

Химические свойства

Гелий является наименее активным элементом из всех известных, относясь к 18-й группе периодической таблицы и имея общепринятое обозначение He.

Такой же является и химическая формула гелия (электронная состоит из двух протонов и такого же количества нейтронов, дающих массовое число 4), который имеет в своей основе кристаллическую решетку гексагонального типа с параметрами 3,570 для показателя a и 5,84 для c, дающих соотношение 1,633. Что касается других химических характеристик вещества, то среди них стоит выделить:

  • Величина ковалентного радиуса равна 28 пм при радиусе иона, соответствующем 93 пм.
  • Уровень электроотрицательности по шкале Полинга соответствует 4,5 баллам.
  • Электродный потенциал, как степени окисления, а следовательно, и валентность элемента имеют нулевые значения.
  • Энергия ионизации первого электрона равна 2361,3 кДж/моль.
  • Показатель теплопроводности элемента соответствует 300 К.
  • Молекулярная ионная энергия равна 58 ккал/моль.
  • Равновесное расстояние между ядрами химически связанных элементов соответствует 1,09 А.

Что касается соединений вещества, то сегодня известной является его связь LiHe. Сам элемент имеет свойство образовывать двухатомные молекулы фторида и хлорида, обозначение первого из которых HeF, а второго HeCl, притом что их получение становится возможным только при воздействии электрического разряда или УФ-излучения на смесь описываемого элемента с фтором или хлором, соответственно.

Совершенно другими свойствами обладает гелий в газообразном состоянии. Не последнюю роль в этом вопросе играет воздействие на газ различного рода физических и химических процессов.

К примеру, если пропустить ток через трубочку с гелием, то можно наблюдать его радужное свечение, сила которого будет зависеть от создаваемого давления в закрытом пространстве.

Если же не прибегать к подобным приемам, то останется один только желтый спектр, считающийся привычным для гелия в его нормальном состоянии.

Ввиду содержания в веществе нескольких линий спектра по мере уменьшения атмосферного давления происходит изменение его цветового излучения, которое начинает меняться от желтого к оранжевому, розовому и зеленому.

Всего же учеными принято выделять два основных спектра — единичный и триплетный, первый из которых свойственен атомам в их нормальном состоянии.

Что касается перехода в триплетное состояние, то он становится возможным только при использовании разряда в 19,77 эВ.

Вывести атом из его привычного состояния можно и другими методами воздействия, один из которых заключается в искусственно созданном столкновении с другими атомами вещества с последовательной передачей энергии между ними.

А вот обратный переход из триплетного состояния в синглетное естественным путем практически невозможен.

Такое состояние называется метастабильным и для того, чтобы перевести газ в стандартное положение вновь, приходится прибегать к различным методам внешнего воздействия.

Интересные факты о гелии

Название элемента происходит от греческого «Гелиос», что означает «Солнце» и латинского «гелиум», притом что второе наименование было выбрано отнюдь не случайно.

Так, не секрет, что окончание «ум» применяется по отношению к металлам, к которым и относился гелий на момент своего открытия.

И хотя на самом деле вещество является неметаллом, иногда его так и называют по-латыни, что не является ошибкой.

Немного истории

Сегодня уже мало кто вспомнит, что открытие элемента произошло еще 18 августа 1868 года, когда известный французский ученый решил исследовать солнечную хромосферу в момент полного затмения звезды в одном из индийских городов. Примечательно, что всего лишь через 3 месяца такое же открытие было сделано в Англии, правда, тогда о его неактуальности еще никто не знал, ввиду более сложной корреспонденции научных данных.

В 1881 году итальянский вулканолог Луиджи Пальмери, исследовавший Везувий, также идентифицировал это вещество, поспешив сообщить о своей находке общественности.

Но самое важное событие в области открытия гелия произошло 27 годами позже, когда он был впервые выявлен в недрах планеты.

Тогда газ удалось добыть из такого распространенного минерала, как клевеит, и со временем именно он использовался учеными для того, чтобы установить величину его удельного веса и других физических параметров.

Со временем исследователи научились получать гелий в жидком виде, для чего впервые довелось применить процедуру дросселирования.

В отличие от этого попытки добывать твердый гелий долгое время не увенчивались успехом.

Ситуация изменилась только в 1926 году, когда вдобавок к охлаждению было применено и критическое понижение атмосферного давления до 35 атм, в результате чего удалось выделить кристаллическую решетку вещества.

Получение и применение

Удивительно, но, несмотря на свое внушительное распространение во всей Вселенной, гелий довольно редко встречается на Земле.

Разной является и природа образования этого элемента на Земле и в космосе, так как в первом случае его выделение происходит за счет распада альфа-частиц тяжелых элементов.

В итоге часть вещества проходит через земные породы, сливаясь с природным газом и демонстрируя концентрацию от 7 процентов от общего объема и выше.

В настоящее время месторождения, в которых наблюдаются большие залежи гелия, имеются на территории таких стран, как Индия, Бразилия, Россия и Танзания.

Естественно, речь идет о гелийсодержащих газах, которые используются в промышленности для выведения чистого элемента или его производных.

Для этого применяется процедура охлаждения посредством дросселирования, и в этом случае сложность разжижения элемента в значительной мере облегчает процесс.

На выходе удается получить смесь, состоящую не только из гелия, но и из водорода и неона, после чего производится очистка. В итоге доля сырого гелия будет составлять около 70−90 процентов от общего объема.

После финишной фильтрации продукт, который, как известно, не может гореть, а следовательно, и не представляет никакой угрозы, транспортируясь в металлических баллонах, изготовленных в соответствии с ГОСТ 949–73 .

Если же стоит вопрос о перевозке сжиженного газа, то в ход идут специальные сосуды марки СТГ-10 и СТГ-25.

Что касается применения, то гелий используется в следующих сферах:

  • Металлургия.
  • Пищевая промышленность.
  • Для изготовления хладагентов для различных агрегатов и рабочих установок.
  • Для наполнения различных судов воздухоплавания и шариков.
  • В дайвинге для приготовления дыхательных смесей, необходимых для погружения.
  • В ракетных установках в качестве одной из составляющих теплоносителя.
  • Для наполнения трубок газорезного типа.
  • В сфере газовой хроматографии.
  • Для поиска утечек в трубопроводах и всевозможных инфраструктурных установках.

Естественно, на этом применение элемента не заканчивается, ввиду чего производство гелия является очень развитым и востребованным в настоящее время.

Среди прочих преимуществ газа — его высокие перспективы в сфере термоядерной энергетики, благо, мировые запасы гелийсодержащих веществ не позволяют отнести его в разряд дефицитного.

Так, современные эксперты называют цифру в 45,6 миллиарда метров кубических, притом что объемы производства перевалили за 110 миллионов еще в 2003 году.

Источник: https://nauka.club/khimiya/geliy.html

Гелий

Гелий

ГЕЛИЙ, He (лат. Helium, от греч. helios — Солнце, т. к. впервые был обнаружен в солнечном спектре * а. helium; н. Helium; ф. helium; и. helio), — элемент VIII группы периодической системы Менделеева, относится к инертным газам, атомный номер 2, атомная масса 4,0026.

Природный гелий состоит из двух стабильных изотопов 3He и 4He. Открыт в 1868 французким астрономом Ж. Жансеном и английским астрономом Дж. Н. Локьером при спектроскопическом исследовании солнечных протуберанцев. На Землегелий впервые выделен в 1895 английским физиком У.

Рамзаем из радиоактивного минерала клевеита.

Свойства гелия

При нормальных условиях гелий — газ без цвета и запаха. Плотность 0,178 кг/м3, t кипения — 268,93° С. Гелий – единственный элемент, который в жидком состоянии не отвердевает при нормальном давлении, как бы глубоко его ни охлаждали. В 1938 советский физик П. Л. Капица открыл у 4He сверхтекучесть — способность течь без вязкости.

Наименьшее давление, необходимое для перевода жидкого гелия в твёрдый, 2,5 МПа, при этом t плавления — 272,1°С. Теплопроводность (при 0°С) 2,1•10-2 Вт/м•К.

Молекула гелия состоит из одного атома, её радиус от 0,085 (нетинный) до 0,133 нм (Ван-дер-Ваальсов) (0,85-1,33 Е), В 1 литре воды при 20°С растворяется около 8,8 мл гелия Устойчивые химические соединения гелия не получены.

Получение гелия

В промышленности гелий получают из гелийсодержащих газов методом глубокого охлаждения (до -190°С), незначительное количество — при работе воздухоразделительных установок. Основные газовые компоненты при этом конденсируются (вымораживаются), а оставшийся гелиевый концентрат очищается от водорода и неона. Разрабатываются также диффузные методы извлечения гелия.

Транспортировка и хранение гелия — в высокогерметизированных ёмкостях. Гелий 1-2-го сортов обычно перевозят в стальных баллонах разной ёмкости, чаще до 40 л, под давлением до 15 МПа.

Хранилища гелия устраивают также в подземных соляных камерах, а гелий-сырец (около 60% He и 40% N2) хранят в выработанных подземных газовых структурах.

На дальние расстояния гелий поставляется в сжатом и жидком виде с помощью специально оборудованного транспорта, а также газопроводом (например, в США).

Использование гелия

Применение гелия основано на таких его уникальных свойствах, как полная инертность (сварка в атмосфере гелия, производство сверхчистых и полупроводниковых материалов, хроматография, добавка в дыхательные смеси и пр.

), высокая проницаемость (течеискатели в аппаратах высокого и низкого давлений). гелий — единственный из химических элементов, который позволяет получать сверхнизкие температуры, необходимые для всех типов сверхпроводящих систем и установок (криоэнергетика).

Жидкий гелий — хладоагент при проведении научных исследований.

Источник: http://www.mining-enc.ru/g/gelij/

Ваш педагог
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: