Гидрирование

Содержание
  1. 3.4. Характерные химические свойства углеводородов: алканов, циклоалканов, алкенов, диенов, алкинов, ароматических углеводородов (бензола и толуола)
  2. 1. Реакции замещения
  3. Галогенирование
  4. 2. Реакции окисления
  5. Горение в кислороде
  6. Каталитическое окисление кислородом
  7. Крекинг
  8. Дегидрирование
  9. Химические свойства циклоалканов
  10. 1. Реакции присоединения
  11. Гидрирование алкенов
  12. Гидрогалогенирование
  13. Гидратация
  14. Полимеризация
  15. Реакции окисления
  16. Реакции присоединения
  17. Химические свойства алкинов
  18. Гидрирование алкинов
  19. Тримеризация алкинов
  20. Димеризация алкинов
  21. Окисление алкинов
  22. Взаимодействие алкинов с основаниями
  23. Химические свойства ароматических углеводородов
  24. Нитрование
  25. Алкилирование
  26. Гидрирование (гидрогенизация) жиров
  27. Химические и физико-химические основы гидрирования жиров
  28. Селективность процесса гидрирования
  29. Влияние технологических режимов на селективность и скорость гидрирования жиров
  30. Температура
  31. Интенсивность перемешивания
  32. Давление водорода
  33. Побочные процессы при гидрировании
  34. Технология гидрирования жиров
  35. Требования к сырью
  36. Технологические режимы
  37. Конспект по химии на тему Гидрирование и дегидрирование углеводородов
  38.  Процесс гидрирования
  39. Процесс дегидрирования органических веществ
  40. Процесс дегидрирования
  41. Гидрирование
  42. Агенты восстановления
  43. Платиновые катализаторы гидрирования
  44. Палладиевый катализатор на сульфат бария
  45. Никелевые катализаторы

3.4. Характерные химические свойства углеводородов: алканов, циклоалканов, алкенов, диенов, алкинов, ароматических углеводородов (бензола и толуола)

Гидрирование

Алканами (парафинами) называют нециклические углеводороды, в молекулах которых все атомы углерода соединены только одинарными связями. Другими словами в молекулах алканов отсутствуют кратные — двойные или тройные связи. Фактически алканы являются углеводородами, содержащими максимально возможное количество атомов водорода, в связи с чем их называют предельным (насыщенными).

Ввиду насыщенности, алканы не могут вступать в реакции присоединения.

Поскольку атомы углерода и водорода имеют довольно близкие электроотрицательности, это приводит к тому, что связи С-Н в их молекулах крайне малополярны. В связи с этим для алканов более характерны реакции протекающие по механизму радикального замещения, обозначаемого символом SR.

1. Реакции замещения

В реакциях данного типа происходит разрыв связей углерод-водород

RH + XY → RX + HY

или

Галогенирование

Алканы реагируют с галогенами (хлором и бромом) под действием ультрафиолетового света или при сильном нагревании. При этом образуется смесь галогенпроизводных с различной степенью замещения атомов водорода — моно-, ди- три- и т.д. галогенозамещенных алканов.

На примере метана это выглядит следующим образом:

Меняя соотношение галоген/метан в реакционной смеси можно добиться того, что в составе продуктов будет преобладать какое-либо конкретное галогенпроизводное метана.

Механизм реакции

Разберем механизм реакции свободнорадикального замещения на примере взаимодействия метана и хлора. Он состоит из трех стадий:

  1. инициирование (или зарождение цепи) — процесс образования свободных радикалов под действии энергии извне – облучения УФ-светом или нагревания. На этой стадии молекула хлора претерпевает гомолитический разрыв связи Cl-Cl c образованием свободных радикалов:

Свободными радикалами, как можно видеть из рисунка выше, называют атомы или группы атомов с одним или несколькими неспаренными электронами (Сl•, •Н, •СН3,•СН2• и т.д.);

2. Развитие цепи

Эта стадия заключается во взаимодействии активных свободных радикалов с неактивными молекулами. При этом образуются новые радикалы. В частности, при действии радикалов хлора на молекулы алкана, образуется алкильный радикал и хлороводород.  В свою очередь, алкильный радикал, сталкиваясь с молекулами хлора, образует хлорпроизводное и новый радикал хлора:

3) Обрыв (гибель) цепи:

Происходит в результате рекомбинации двух радикалов друг с другом в неактивные молекулы:

2. Реакции окисления

В обычных условиях алканы инертны по отношению к таким сильным  окислителям, как концентрированная серная и азотная кислоты,  перманганат и дихромат калия (КMnО4, К2Cr2О7).

Горение в кислороде

А) полное сгорание при избытке кислорода. Приводит к образованию углекислого газа и воды:

CH4 + 2O2 = CO2 + 2H2O

Б) неполное сгорание при недостатке кислорода:

2CH4 + 3O2 = 2CO + 4H2O

CH4 + O2 = C + 2H2O

Каталитическое окисление кислородом

В результате нагревания алканов с кислородом (~200 оС) в присутствии  катализаторов, из них может быть получено большое разнообразие органических продуктов: альдегиды, кетоны, спирты, карбоновые кислоты.

Например, метан, в зависимости природы катализатора, может быть окислен в метиловый спирт, формальдегид или муравьиную кислоту:

Крекинг

Крекинг (от англ. to crack — рвать)  — это химический процесс протекающий при высокой температуре, в результате которого происходит разрыв углеродного скелета молекул алканов с образованием молекул алкенов и алканов с обладающих меньшими молекулярными массами по сравнению с исходными алканами. Например:

CH3-CH2-CH2-CH2-CH2-CH2-CH3  → CH3-CH2-CH2-CH3 + CH3-CH=CH2

Крекинг бывает термический и каталитический. Для осуществления  каталитического крекинга, благодаря использованию катализаторов, используют заметно меньшие температуры по сравнению с термическим крекингом.

Дегидрирование

Отщепление водорода происходит в результате разрыва связей С—Н; осуществляется в присутствии катализаторов при повышенных температурах. При дегидрировании метана образуется ацетилен:

2CH4 → C2H2 + 3H2

Нагревание метана до 1200 °С приводит к его разложению на простые вещества:

СН4 →  С + 2Н2

При дегидрировании остальных алканов образуются алкены:

C2H6 → C2H4 + H2

При дегидрировании н-бутана образуются бутен-1 и бутен-2 (последний в виде цис- и транс-изомеров):

Химические свойства циклоалканов

Химические свойства циклоалканов с числом атомов углерода в циклах больше четырех, в целом практически идентичны свойствам алканов.

Для циклопропана и циклобутана, как ни странно,  характерны реакции присоединения. Это обусловлено большим напряжением внутри цикла, которое приводит к тому, что данные циклы стремятся разорваться.

Так циклопропан и циклобутан легко присоединяют бром, водород или хлороводород:

1. Реакции присоединения

Поскольку двойная связь в молекулах алкенов состоит из одной прочной сигма- и одной слабой пи-связи, они являются довольно активными соединениями, которые легко вступаю в реакции присоединения. В такие реакции алкены часто вступают даже в мягких условиях — на холоду, в водных растворах и органических растворителях.

Гидрирование алкенов

Алкены способны присоединять водород в присутствии катализаторов (платина, палладий, никель):

CH3—СН=СН2 + Н2 → CH3—СН2—СН3

Гидрирование алкенов легко протекает даже при обычном давлении и незначительном нагревании. Интересен тот факт, что для дегидрирования алканов до алкенов могут использоваться те же катализаторы, только процесс дегидрирования протекает при более высокой температуре и меньшем давлении.

Гидрогалогенирование

Как нетрудно заметить, присоединение галогеноводорода к молекуле несимметричного алкена должно, теоретически, приводить к смеси двух изомеров. Например, при присоединении бромоводорода к пропену должны были бы получаться продукты:

Тем не менее в отсутствие специфических условий (например, наличие пероксидов в реакционной смеси) присоединение молекулы галогеноводорода будет происходить строго селективно в соответствии с правилом Марковникова:

Присоединении галогеноводорода к алкену происходит таким образом, что водород присоединяется к атому углерода с большим числом атомов водорода (более гидрированному), а галоген — к атому углерода с меньшим числом атомов водорода (менее гидрированному).

Поэтому:

Гидратация

Данная реакция приводит к образованию спиртов, и также протекает в соответствии с правилом Марковникова:

Как легко догадаться, по причине того, что присоединение воды к молекуле алкена происходит согласно правилу Марковникова, образование первичного спирта возможно только в случае гидратации этилена:

CH2=CH2 + H2O → CH3-CH2-OH

Именно по такой реакции проводят основное количество этилового спирта в крупнотоннажной промышленности.

Полимеризация

Специфическим случаем реакции присоединения можно реакцию полимеризации, которая в отличие от галогенирования, гидрогалогенирования и гадратации, протекает про свободно-радикальному механизму:

Реакции окисления

Как и все остальные углеводороды, алкены легко сгорают в кислороде с образованием углекислого газа и воды. Уравнение горения алкенов в избытке кислорода имеет вид:

CnH2n + (3/2)nO2 → nCO2 + nH2O

В отличие от алканов алкены легко окисляются. При действии на алкены водного раствора KMnO4 обесцвечивание, что является качественной реакцией на двойные и тройные CC связи в молекулах органических веществ.

Окисление алкенов перманганатом калия в нейтральном или слабощелочном растворе приводит к образованию диолов (двухатомных спиртов):

3C2H4 + 2KMnO4 + 4H2O → 3CH2OH–CH2OH + 2MnO2 + 2KOH (охлаждение)

В кислой среде происходит полное разрыв двойной связи с превращение атомов углерода образовывавших двойная связь в карбоксильные группы:

5CH3CH=CHCH2CH3 + 8KMnO4 + 12H2SO4 → 5CH3COOH + 5C2H5COOH + 8MnSO4 + 4K2SO4 + 12H2O (нагревание)

В случае, если двойная С=С связь находится в конце молекулы алкена, то в качестве продукта окисления крайнего углеродного атома при двойной связи образуется углекислый газ. Связано это с тем, что промежуточный продукт окисления – муравьиная кислота легко сама окисляется в избытке окислителя:

CH3CH=CH2 + 2KMnO4 + 3H2SO4 → CH3COOH + CO2 + 2MnSO4 + K2SO4 + 4H2O (нагревание)

При окислении алкенов, в которых атом C при двойной связи содержит два углеводородных заместителя, образуется кетон. Например, при окислении 2-метилбутена-2 образуется ацетон и уксусная кислота.

Окисление алкенов, при котором происходит разрыв углеродного скелета по двойной связи используется для установления их структуры.

Реакции присоединения

Например, присоединение галогенов:

Бромная вода обесцвечивается.

В обычных условиях присоединение атомов галогена происходит по концам молекулы  бутадиена-1,3, при этом π-связи разрываются, к крайним атомам углерода присоединяются атомы брома, а свободные валентности образуют новую π-связь. Таким образом, как бы происходит «перемещение» двойной связи. При избытке брома может быть присоединена еще одна его молекула по месту образовавшейся двойной связи.

Химические свойства алкинов

Алкины являются ненасыщенными (непредельными) углеводородами в связи с чем способны вступать в реакции присоединения. Среди реакци присоединения для алкинов наиболее распространено электрофильное присоединение.

Гидрирование алкинов

Алкины реагируют с водородом в две ступени. В качестве катализаторов используют такие металлы как платина, палладий, никель:

Тримеризация алкинов

При пропускании ацетилена над активированным углем при высокой температуре из него образуется смесь различных продуктов, основным из которых является бензол – продукт тримеризации ацетилена:

Димеризация алкинов

Также ацетилен вступать в реакцию димеризации. Процесс протекает в присутствии солей меди как катализаторов:

Окисление алкинов

Алкины сгорают в кислороде:

СnH2n-2 + (3n-1)/2 O2 → nCO2 + (n-1)H2O

Взаимодействие алкинов с основаниями

Алкины с тройной C≡C на конце молекулы, в отличие от остальных алкинов, способны вступать в реакции, в которых атом водорода при тройной связи замещается металл. Например, ацетилен реагирует с амидом натрия в жидком аммиаке:

HC≡CH + 2NaNH2 → NaC≡CNa + 2NH3,

а также с аммиачным раствором оксида серебра, образуя нерастворимые солеподобные вещества называемые ацетиленидами:

Благодаря такой реакции можно распознать алкины с концевой тройной связью, а также выделить такой алкин из смеси с другими алкинами.

Следует отметить, что все ацетилениды серебра и меди являются взрывоопасными веществами.

Ацетилениды способны реагировать с галогенпроизводными, что используется  при синтезе более сложных органических соединений с тройной связью:

СН3-C≡CН + NaNН2 → СН3-C≡CNa + NН3

СН3-C≡CNa + CH3Br → СН3-C≡C-СН3 + NaBr

Химические свойства ароматических углеводородов

Ароматический характер связи влияет на химические свойства бензолов и других ароматических углеводородов.

Единая 6пи–электронная система намного более устойчива, чем обычные пи-связи. Поэтому для ароматических углеводородов более характерны реакции замещения, а не присоединения. В реакции замещения арены вступают по электрофильному механизму.

Нитрование

Лучше всего реакция нитрования протекает под  действием не чистой азотной кислоты, а ее смеси с концентрированной серной кислотой, так называемой нитрующей смеси:

Алкилирование

Реакция при которой один из атомов водорода при ароматическом ядре замещается на углеводородный радикал:

Также вместо галогенпроизводных алканов можно использовать алкены. В качестве катализаторов можно использовать галогениды алюминия, трехвалентного железа или неорганические кислоты.

Источник: https://scienceforyou.ru/teorija-dlja-podgotovki-k-egje/harakternye-himicheskie-svojstva-uglevodorodov

Гидрирование (гидрогенизация) жиров

Гидрирование

Сущность процесса гидрирования заключается в целенаправленном изменении жирнокислотного состава масел и жиров в результате присоединения водорода по двойным связям ненасыщенных жирных кислот.

Гидрированные жиры называют саломасом. В результате изменения жирнокислотного состава происходит изменение свойств масел и жиров: повышаются их температуры плавления, пластичность, твердость, стойкость к окислению и термическому воздействию.

Так, например, гидрирование глицеридов линолевой и линоленовой кислот до глицеридов олеиновой кислоты и ее изомеров (транс-изомер олеиновой кислоты – элаидиновая кислота) в 10…15 раз повышает стойкость жиров к окислению кислородом воздуха. Общий характер зависимости температуры плавления и твердости жиров от содержания насыщенных кислот в их триглицеридах показан на рисунке 1.

Рисунок 1 – Влияние степени ненасыщенности жира на его свойства

При гидрировании происходит также миграция (перемещение) двойных связей в молекулярной цепи жирных кислот (изомеризация), что также заметно влияет на физические и химические свойства жиров.

Гидрированию подвергают соевое, подсолнечное, хлопковое, рапсовое (низкоэруковое) и некоторые другие растительные масла, находящиеся в жидком состоянии, а также животные жиры и свободные жирные кислоты, извлеченные из соапстоков.

Важнейшей областью применения саломасов является производство маргариновой продукции. Здесь используются частично гидрированные растительные масла с температурой плавления 31…34оС и твердостью 160…320 г/см.

Саломасы с температурой плавления 35…37 оС и твердостью 550…750 г/см широко используются в кондитерском и кулинарном производстве. Масла и жиры с высокой степенью гидрирования (tпл.

= 40…50 оС) – саломасы технического назначения – находят применение в производстве туалетного и хозяйственного мыла, технических смазок, стеариновой кислоты.

Химические и физико-химические основы гидрирования жиров

Гидрирование жиров всегда проводится в присутствии катализаторов. Химическая сущность процесса гидрирования состоит в присоединении водорода к двойным связям углеводородных радикалов остатков жирных кислот глицеридов:

Гидрирование жиров является гетерогенным процессом и протекает на границе раздела двух фаз жир – катализатор. Скорость таких процессов пропорциональна площади поверхности катализатора. Поэтому для гидрирования применяют катализаторы с высокой удельной поверхностью – 100 м2/г и выше.

В начальной стадии процесса гидрирования происходит насыщение поверхности катализатора водородом, или активация катализатора (рисунок 2, а). Это наиболее медленная стадия, поэтому она лимитирует скорость протекания всего процесса.

После насыщения поверхности катализатора водородом процесс гидрирования в общем случае может протекать двумя путями.

Активированный катализатор может либо присоединить водород к двойным связям жирных кислот (рисунок 2, б) – в этом случае пройдёт собственно гидрирование; либо одновременно присоединить и оторвать атом водорода – тогда произойдет смещение двойной связи вдоль молекулярной цепи (рисунок 2, в), т.е. осуществится структурная изомеризация. На катализаторе может происходить также и геометрическая (пространственная) цис-, транс-изомеризация жирнокислотных остатков.

Рисунок 2 – Схема каталитического гидрирования жиров

Следует отметить, что в отличие от гидрирования реакция изомеризации не требует расхода водорода, поэтому она может протекать и после прекращения его подачи в реакционный аппарат.

Селективность процесса гидрирования

Под селективностью (избирательностью) реакции понимают вероятность ее протекания по одному из нескольких возможных направлений. С этой точки зрения для процесса гидрирования жиров характерны следующие общие закономерности:

  1. полиненасыщенные жирные кислоты гидрируются ступенчато, т.е. последовательно превращаются в кислоты с меньшим числом двойных связей, например: линоленовая → линолевая → олеиновая → стеариновая;
  2. скорость гидрирования жирных кислот тем выше, чем больше их ненасыщенность, например, скорость перехода линолевой кислоты в олеиновую в 2…10 раз выше скорости перехода олеиновой кислоты в стеариновую;
  3. скорость гидрирования практически не зависит от химического строения триглицеридов; скорость гидрирования, например, олеиновой кислоты одинакова в триолеине и в моноолеине.

Если перечисленные основные закономерности соблюдаются полностью, то процесс гидрирования жиров является абсолютно селективным. При абсолютно селективном гидрировании смесей ненасыщенных кислот, например, линолевой и олеиновой, насыщение водородом линолевой кислоты до олеиновой будет предшествовать образованию стеариновой кислоты из олеиновой.

Селективность процесса гидрирования сильно зависит от природы катализатора. Для гидрирования применяют никелевые и никель-медные катализаторы двух видов: дисперсные (порошкообразные) и стационарные (сплавные – в форме гранул или пористой массы).

Достоинством дисперсных катализаторов является высокая селективность (94…97 %) и стабильность хода процесса гидрирования, недостатком – трудность отделения катализатора от образовавшегося саломаса.

Стационарные катализаторы закреплены в аппаратуре неподвижно и поэтому не требуют по окончании процесса гидрирования специального отделения от саломаса. Недостатками таких катализаторов являются сложность их регенерации и низкая селективность.

Влияние технологических режимов на селективность и скорость гидрирования жиров

Основными технологическими параметрами, определяющими течение процесса гидрирования жиров, являются температура, интенсивность перемешивания, давление водорода. Их влияние на скорость гидрирования жиров в общем виде представлено на рисунке 3.

Температура

Повышение температуры жиров от точки их плавления до ∼180 оС приводит к резкому снижению их вязкости и, соответственно, к повышению скорости диффузии молекул.

Соотношение скорости массопереноса и скорости присоединения водорода смещается при этом из диффузной в кинетическую область (рисунок 3, кр. 1), т.е.

скорость процесса гидрирования в целом будет определяться скоростью протекания химической реакции.

Максимальная скорость и селективность процесса гидрирования наблюдаются в интервале температур от 180 до 200 оС, при которых и проводится получение пищевого саломаса. Дальнейшее повышение температуры приводит к возрастанию степени адсорбции непредельных соединений на катализаторе и образованию никелевых мыл, что заметно снижает скорость гидрирования жиров (рисунок 3, кр. 1).

Рисунок 3 – Зависимость скорости гидрирования от параметров процесса

Интенсивность перемешивания

С увеличением интенсивности перемешивания скорость гидрирования возрастает до тех пор, пока не достигнет определенного предела. Если скорость подвода молекул реагентов к катализатору ниже скорости присоединения водорода к двойным связям, то реакция протекает в диффузионной области (рисунок 3, кр. 2).

В этом случае повышение интенсивности перемешивания приводит к увеличению скорости гидрирования.

Если же скорость подвода молекул реагирующих веществ и отвода образующихся продуктов выше скорости присоединения водорода, то реакция протекает в кинетической области, и дальнейшая интенсификация перемешивания не влияет на ее скорость.

Для селективного гидрирования реакцию необходимо проводить в кинетической области, что достигается при интенсивном перемешивании реакционной массы и ее барботировании водородом.

Давление водорода

С повышением давления водорода увеличивается скорость гидрирования жиров, но падает селективность процесса. Для обеспечения высокой селективности процесса при получении пищевого саломаса гидрирование проводят при давлении водорода не более 0,2 МПа.

Повышение давления водорода до 3 МПа и более целесообразно при выработке глубокогидрированных саломасов, которые используются для получения технического стеарина или поверхностно-активных веществ.

Селективность реакции гидрирования в этом случае значения не имеет.

Побочные процессы при гидрировании

При гидрировании жиров кроме основных реакций присоединения водорода к непредельным жирным кислотам и их изомеризации протекают и побочные реакции, многие из которых обуславливают производственные потери жира. К таким реакциям относятся следующие процессы.

  • термодеструкция глицеридов, которая приводит к образованию акролеина СН2=СН—СН=О (токсичен!), быстрополимеризующихся кетенов R–CH=C=O и свободных жирных кислот. Термодеструкция усиливается при температурах более 230 оС и при снижении интенсивности перемешивания реакционной массы.
  • гидролиз глицеридов до свободных жирных кислот и глицерина. Основной причиной гидролиза является примесь воды в поступающем водороде.
  • термодеструкция гидропероксидов глицеридов жирных кислот приводит к образованию смеси насыщенных и ненасыщенных альдегидов, спиртов и кислот. Характерный для гидрированных жиров “саломасный” запах придает им примесь альдегидов фракции С6–С11 при их наличии в саломасе в количестве всего 10–7 % (!).
  • разрушение витаминов. При гидрировании происходит термическое разрушение витамина А, частично – витамина D, но не затрагиваются витамины Е (токоферолы).

Технология гидрирования жиров

Для проведения промышленного гидрирования жиров используются многочисленные технологические схемы, которые могут быть классифицированы следующим образом:

  • по характеру движения жирового сырья через реактор различают периодический и непрерывный процессы гидрирования;
  • по характеру движения газа через реактор различают гидрирование методом насыщения и гидрирование с внешней циркуляцией водорода. При гидрировании методом насыщения определенное количество водорода, подаваемого в реактор, циркулирует внутри него в течение всего процесса и выводится из аппарата только при его разгрузке. При гидрировании с внешней циркуляцией водорода последний подается в реактор в значительном избытке. Непрореагировавший водород непрерывно выводится из реактора, а затем возвращается в процесс вновь.
  • по типу применяемых катализаторов различают гидрирование на суспендированных и стационарных катализаторах. Суспендированный катализатор подается в реактор вместе с жиром и выводится из него вместе с саломасом. Стационарный катализатор закреплен в реакторе и выгружается из него лишь при необратимой потере активности.

В зависимости от назначения вырабатываемого саломаса используют ту или иную технологическую схему производства.

Требования к сырью

Главное требование к сырью, поступающему на гидрирование, – высокая степень очистки жиров от примесей, которые вызывают отравление катализаторов. Наиболее сильное дезактивирующее действие на катализаторы оказывают соединения серы в виде сульфидов, мыла, фосфолипиды, вода, госсипол и его производные.

Даже ничтожные количества серы в виде сульфидов (0,001…0,002 %) быстро и необратимо отравляют катализатор. По этой причине гидрирование рапсового и горчичного масел, которые содержат повышенное количество соединений серы, протекает медленно, с увеличенным расходом катализатора.

Щелочные мыла отравляют катализатор, адсорбируясь на его поверхности. Фосфолипиды сравнительно легко образуют фосфорнокислые соли никеля, разрушая тем самым катализатор гидрирования. Вода в условиях высокотемературного гидрирования стимулирует гидролиз глицеридов и окисление катализатора, что также снижает его активность.

Таким образом, чтобы уменьшить расход катализатора и водорода, снизить температуру гидрирования, уменьшить распад жиров, необходимо гидрируемое сырье и водород максимально освободить от перечисленных примесей. С этой целью проводят рафинацию масел и жиров по полному циклу обработки, а также глубокую сушку жирового сырья, очистку и осушку водорода.

Технологические режимы

Основным элементом промышленных установок для гидрирования жиров является гидрогенизационный аппарат или – чаще – группа (батарея) таких аппаратов.

В качестве гидрогенизационного аппарата используют реакторы с мешалками объемом 5…12 м3 или колонные (вертикальные) барботажные аппараты.

По конструкции высота таких колонн в 10…20 раз превышает их внутренний диаметр, который составляет 0,5…0,8 м.

Саломасы для маргариновой продукции получают, главным образом, непрерывным методом в батареях из 3-х реакторов с мешалками при давлении водорода 0,05…0,20 МПа.

При этом используют суспендированный никель-кизельгуровый катализатор или смесь из 90…95 % никель-кизельгурового и 5…10 % никель-медного катализаторов. Доля катализатора в гидрируемом сырье составляет 0,1…0,4 %.

Температура при переходе из одного реактора в другой повышается от 200 до 240 оС. Расход водорода на всю батарейную установку составляет 700…1000 м3/час.

Снижение степени ненасыщенности жирового сырья в установившемся режиме гидрирования сопровождается закономерным и взаимосвязанным изменением свойств получаемого саломаса.

Это позволяет контролировать и регулировать ход процесса гидрирования по расходу водорода и по одному из качественных показателей гидрогенизата, например, по изменению температуры плавления или показателя преломления саломаса, величина которого пропорциональна йодному числу продукта.

(При гидрировании температура плавления жира возрастает, а величина показателя преломления (йодное число) – снижается).

Саломас, выгружаемый из последнего реактора батарейной установки, охлаждается в теплообменнике до температуры 100…140 оС и направляется на фильтрование.

Фильтрование проводится на фильтр-прессах, где происходит отделение саломаса от катализатора, который вновь возвращается в производство (оборотный катализатор).

Для поддержания достаточной активности оборотного катализатора к нему добавляют свежий катализатор в соотношении 10 : 1 – 20 : 1.

Источник: https://nomnoms.info/gidrirovanie-gidrogenizatsiya-zhirov/

Конспект по химии на тему Гидрирование и дегидрирование углеводородов

Гидрирование

Гидрирование или гидрогенизация (от позднелатинского hydrogenium – водород), деструктивная гидрогенизация, – совокупность химических процессов, происходящих при воздействии водорода на органическое вещество.

В топливоперерабатывающей промышленности гидрогенизацию применяют для получения из твёрдых горючих ископаемых (угли, сланцы), а также низкосернистых нефтей и тяжёлых нефтяных остатков моторного горючего, смазочных масел и химических продуктов.

Гидрогенизация твёрдого топлива является универсальным методом получения из него синтетического жидкого топлива. Также важный резерв для замены сырой нефти горючими сланцами, битумами, углями [5,6].

Развитие исследований в области гидрогенизации относится к 1897-1900 гг., когда П. Сабатье (Франция) и Н.Д. Зелинский (Россия) со своими учениками разработали основы гидрогенизации катализа органических соединений.

Влияние давления водорода на ускорение реакций гидрогенизации органических соединений было установлено вначале XX в. В.Н. Ипатьевым. Промышленное применение гидрогенизации твёрдого топлива впервые было получено в 30-40-х гг., в Германии.

Перед 2-й мировой войной (1939-1945) установки по гидрогенизации угля и угольных смол работали также в Великобритании, Италии, Корее; в СССР были построены два опытных завода. В послевоенный период в основе переработки нефти сырья применяли гидрогенизацию. Начиная с 60-х гг.

ведутся работы по гидрогенизации твёрдого топлива с целью создания экономически эффективных процессов производства синтетических жидких топлив.

В СССР был разработан процесс гидрогенизации угля для получения моторного горючего, котельного топлива и химикатов.

Процесс осуществляется при температуре 420-430 °С, давлении водорода 10 Па, в присутствии активных катализаторов, растворителя и органических добавок-ингибиторов реакций радикальной полимеризации.

В зависимости от исходного сырья выход жидких продуктов 85-95% (технологическая схема процесса дана на рис.1.).

Рис.1. Процесс гидрогенизации угля для получения моторного горючего, котельного топлива и химикатов.

В США, Великобритании, ФРГ разрабатывается ряд процессов по гидрогенизации угля с катализатором и без катализатора, под давлением водорода 1-7 и 15-30 Па, температура 400-500 °С, а также экстракции угля растворителями с последующей гидрогенизации экстрактов. Исследования по гидрогенизации твёрдого топлива и тяжёлых нефти остатков ведутся в Японии, Индии, Австралии, Польше и др. [3,5].

 Процесс гидрирования

Реакцию гидрирования ненасыщенных соединений водородом можно рассматривать как реакцию восстановления. При этом атомы углерода кратной связи восстанавливаются, а молекулярный водород окисляется. Присоединение водорода к алкенам происходит только в присутствии катализаторов:

В качестве катализаторов применяют тонкоизмельченные металлы – платину, палладий, никель. Наиболее часто используются никель Ренея и катализатор Адамса.

Никель Ренея получают обработкой никель-алюминиевого сплава гидроксидом натрия, в результате чего получают тонко измельченный никель, насыщенный водородом. Катализатор Адамса – это платиновая чернь, получаемая восстановлением оксида платины(IV) водородом непосредственно в процессе реакции.

Палладий для увеличения поверхности наносят на инертный материал – уголь. Все эти катализаторы не растворяются в органических растворителях.

Водород и алкен адсорбируются на большой поверхности тонкоизмельченного металла, где и происходит реакция. Оба атома водород присоединяются с одной стороны π-связи, т.е. процесс идет как син-присоединение:

Молекула ненасыщенного соединения может содержать другие функциональные группы, способные к восстановлению. Во многих случаях удается подобрать условия, при которых происходит селективное восстановление двойной связи. В приведенных ниже примерах восстановление не затрагивает бензольное кольцо и карбонильную группу:

Гидрирование является экзотермической реакцией. Значения теплот гидрирования дают ценную информацию об относительной устойчивости ненасыщенных соединений. На основании этих данных было установлено, что чем более замещенным является алкен, тем он термодинамически стабильнее [7,8].

Процесс дегидрирования органических веществ

Дегидрирование или дегидрогенизация – это химическая реакция отщепления водорода от молекул органических соединений; одна из фаз процесса биологического окисления. Осуществляется в присутствие катализаторов или под действием акцепторов водорода.

Каталитическое дегидрогенизация и обратная реакция – гидрирование – связаны подвижным термодинамическим равновесием. Протеканию дегидрогенизация способствует повышение температуры и понижение давления.

Осуществляют дегидрогенизация обычно при температуре > 300 °С и давлении 0,1-5 МПа; при необходимости применение более высоких давлений сочетают с соответствующим повышением температуры. Катализаторы дегидрогенизации – обычно многокомпонентные системы, содержащие переходные металлы, их оксиды или сульфиды.

При дегидрогенизации молекула реагирующего соединений образует комплекс с катализатором, распадающийся затем на Н2 и продукт, десорбируемые с поверхности катализатора [3,5].

Дегидрогенизация парафинов в ароматических соединениях (дегидроциклизация) – одна из стадий каталитического риформинга; осуществляется на оксиднохромовом катализаторе при 330-400 °С, давление 0,2-0,8 МПа. Каталитическая дегидрогенизации используют в промышленности для получения 1,3-бутадиена, изопрена, стирола и др.

В СССР в 1984 путем дегидрогенизация было получено более 2 млн. бутадиена и около 11 млн. стирола. К каталитической дегидрогенизации относят также так называемая окислительная дегидрогенизации, протекающее в газовой фазе под действием окислителей (например: О2, SO2, H2O2, I2, Вr2 и др.).

Реакция практически необратима, что способствует увеличению выхода целевых продуктов. Так, метанол в присутствии серебра (Ag) окисляется О2 воздуха при ≈ 400 °С в формальдегид с выходом около 80%.

Окислительное дегидрогенизация олефинов и алкилбензолов осуществляют в присутствие фосфатов алюминия, молибдатов висмута, цеолитoв, активированного угля и др.

В качестве акцепторов водорода при дегидрогенизация используют обычно 2,3-дициано-1,4-бензохинон, пероксиды Ni, SeO2, Se, S, а также металлы, способные образовывать гидриды (Zr, Ti, интерметаллиды и др.). Выше указаны некоторые примеры [5].

Процесс дегидрирования

Отщепление водорода от алканов (дегидрирование) является обратимым высокотемпературным каталитическим процессом и используется главным образом в промышленности. Ввиду сложности протекания гетерогенных каталитических реакций будут рассмотрены только некоторые общие закономерности.

В качестве катализаторов дегидрирования применяют оксиды металлов (Сr2Оэ, Fe2O3, ZnO и др.), а также металлы (Pt, Pd, Ni, Fe); при катализе оксидами температура процесса 450-650 °С, при катализе металлами – около 300 оС.

Низшие алканы (С2–С4) при дегидрировании превращаются в алкены, а из бутана, в зависимости от применяемого катализатора и условий реакции, может получаться и бутадиен-1,3:

Алканы, содержащие пять атомов углерода в цепи (но не более), подвергаются дегидроциклизации с образованием циклопентанового углеводорода:

Если в цепи алкана содержится шесть и более атомов углерода, то образующийся в подобных условиях циклогексан (или его гомологи) подвергается дальнейшему дегидрированию с образованием энергетически выгодного ароматического кольца:

В процессах промышленной переработки нефтяного сырья реакции дегидроциклизации приводят к ароматизации насыщенных углеводородов и составляют основу каталитического риформинга.

Дегидрирование алканов – реакция, обратная гидрированию ненасыщенных углеводородов. Положение равновесия определяется температурой и давлением. Обычно дегидрирование проводят при более высоких температурах, а гидрирование – при сравнительно низких (до 200 °С), согласно принципу Лe Шателье.

Принцип Ле Шателье-Брауна (1884) – если на систему, находящуюся в устойчивом равновесии, воздействовать извне, изменяя какое-либо из условий равновесия (температура, давление, концентрация, внешнее электромагнитное поле), то в системе усиливаются процессы, направленные на компенсацию внешнего воздействия.

Анри Ле Шателье (Франция) сформулировал этот термодинамический принцип подвижного равновесия, позже обобщённый Карлом Брауном.

Принцип устойчивости применим к равновесию любой природы: механическому, тепловому, химическому, электрическому (эффект Ленца, явление Пельтье) [3].

Дегидрированию благоприятствует пониженное давление; на практике используют давление 1-10атм (1атм = 101,3 кПа.), а иногда – ниже атмосферного. Кроме того, для каждого соединения существует довольно узкий диапазон температур, в котором протекает прямой или обратный процесс [6,7,8].

Источник: https://infourok.ru/konspekt-po-himii-na-temu-gidrirovanie-i-degidrirovanie-uglevodorodov-369600.html

Гидрирование

Гидрирование

Для восстановления различных функциональных групп чаще всего используют молекулярный водород. Восстановление ненасыщенных функций ($C=C$, $C=O$, $NO_2$ и т.д.) обозначают термином гидрирование, а восстановление с разрывом $\sigma$-связей – термином гидрогенолиз.

Рисунок 1. Гидрирование и гидрогенолиз. Автор24 — интернет-биржа студенческих работ

Агенты восстановления

Химические методы восстановления заключаются в действии неорганических (иногда комплексных) соединений, которые отдают или электроны, или атомы водорода субстрата.

Сюда относят щелочные и щелочноземельные металлы, их растворы в аммиака, амальгамы, комплексные гидриды алюминия и бора.

Алюминий, олово, железо, цинк, которые выделяют водород при их растворении в кислотах, алкоголяты алюминия, йодоводородная кислота – также часто используемые восстановители.

Каталитическое восстановление является важным методом восстановления ненасыщенных и ароматических углеводородов и их производных. В качестве катализаторов гидрирования используют в основном платину и палладий (чаще всего в виде черни или черни на носителях), а также никель (чаще в скелетном виде).

Гидрирования по Сабатье и Сандерану осуществляют проведением субстрата над катализатором (измельченный никель), нагретым до 100-200$\circ$С. Можно проводить гидрирования на холоду по методу Фокина – Вильшттера, пропуская водород в растворы ненасыщенных углеводородов в присутствии катализаторов. Используют также оксид платины по Адамсу.

В последнее время найдено много новых эффективных и селективных восстановителей:

  1. Натрий в жидком аммиаке: в колбу с обратным холодильником, капельной воронкой и дымовых трубкой помещают большие куски натрия и пропускают поток сухого аммиака до образования однородной жидкости синего цвета с красным оттенком. Опыты следует проводить под вытяжным шкафом.

    Натрий в жидком аммиаке используется для восстановления диенов с системой сопряженных двойных связей в алкены; алкенов в алканы; алкинов в алкены.

    Рисунок 2. Использование натрия в жидком аммиаке. Автор24 — интернет-биржа студенческих работ

  2. Алюмогидрид лития: держат в плотно закрытых стаканах. Восстановление проводят в апротонных растворителях. Очень активный, сильный восстановитель.

    1 моль алюмогидрида восстанавливает 4 моля альдегида.

    Получение: $4LiH+AlCl_3=LiAlH_4+3LiCl$

    Восстановление алкинов в транс-алкены:

    Рисунок 3. Восстановление алкинов в транс-алкены. Автор24 — интернет-биржа студенческих работ

Платиновые катализаторы гидрирования

Платиновая чернь. Образовавшийся осадок платины промывают декантацией в высоком цилиндре до исчезновения щелочной реакции и реакции на ионы хлора. Хранят под дистиллированной водой.

Платина и палладий на носителях. Часто используются платиновые или палладиевые катализаторы, в основном черни осажденные на носителях.

Носителями служат вещества, которые имеют большую поверхность (порошок активированного угля, сернокислый барий, оксид алюминия.

) Катализатор на носителе получают, заливая носитель водным раствором соли платины или палладия и высушивая после чего чернь.

Платина на угле: активированный уголь, смоченный в стакане при комнатной температуре смесью водного раствора хлороплатината калия и 40% раствором формалина. Затем добавляют по каплям 50% $КОН$ (0-10$\circ$С) в течение 30 мин. Далее полчаса греют при температуре 60$\circ$С. Отфильтровывают на воронке Бюхнера и промывают дистиллированной водой.

Палладиевый катализатор на сульфат бария

Хлорид палладия растворяют в при нагревании в соляной кислоте. Отдельно готовят суспензию сульфата бария. К раствору $Ba(OH)_2$ $8H_2O$ приливают серную кислоту до кислой реакции. К горячей суспензии добавляют хлорид палладия с формалином и щелочью до появления щелочной реакции; дальше отстаивают и декантируют. Промывают водой, фильтруют, сушат при 80$\circ$С.

Использование: палладиевые катализаторы используют при:

  1. гидрировании хлорангидридов кислот до альдегидов по Роземунду:

    Рисунок 4. Гидрирование хлорангидридов кислот до альдегидов по Роземунду. Автор24 — интернет-биржа студенческих работ

  2. каталитическом гидрировании ненасыщенных спиртов и кетонов, а также алкинов:

    Рисунок 5. Каталитическое гидрирование ненасыщенных спиртов и кетонов, а также алкинов:. Автор24 — интернет-биржа студенческих работ

  3. гидрировании ароматических соединений в циклоалканы:

    Рисунок 6. Гидрирование ароматических соединений в циклоалканы. Автор24 — интернет-биржа студенческих работ

  4. восстановлении кетонов в кислой среде:

    Рисунок 7. Восстановление кетонов в кислой среде. Автор24 — интернет-биржа студенческих работ

  5. восстановлении ароматических сложных эфиров, не затрагивая эфирной группы:

Рисунок 8. Восстановление ароматических сложных эфиров, не затрагивая эфирной группы. Автор24 — интернет-биржа студенческих работ

Никелевые катализаторы

Никель Ренея. С никелевых катализаторов всего используется скелетная никель ($Ni$ \ $ra$). Он готовится из сплава равных по количеству алюминия и никеля с последующим растворением алюминия в лугу. Никель Ренея очень пирофорный, поэтому его хранят под водой.

Никель по Багу: сплав никеля с алюминием (40%: 60%) измельченный и отсеянный от пыли растворяют в щелочи, добавляя ее по каплям из лейки. Нагревают до температуры 60$\circ$С на водяной бане при перемешивании. Промывают 5-8 раз дистиллированной водой, декантируют. Оставляют в спирте в плотно закрытой стакане.

Никель на оксиде алюминия: содержит 60% никеля. В стакане смешивают $Ni(NO_3)_2∙6H_2O$, $Al(NO_3)_3∙9H_2O$ и сухой $Al_2O_3$; добавляют соду до щелочной реакции при перемешивании. Полученную смесь промывают водой декантацией. Катализатор отфильтровывают на воронке Бюхнера и формируют в виде горошин. Высушивают.

Источник: https://spravochnick.ru/himiya/organicheskie_soedineniya_perehodnyh_metallov_i_metallokompleksnyy_kataliz/gidrirovanie/

Ваш педагог
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: