КАПИЛЛЯРНАЯ ХРОМАТОГРАФИЯ

Хроматография. Лекция 5. Газовая хроматография

КАПИЛЛЯРНАЯ ХРОМАТОГРАФИЯ

Газовая хроматография (ГХ) – метод разделения летучих соединений, в котором подвижной фазой является газ.

  • ПФ – газ носитель (инертный газ: гелий)
  • НФ – твердый сорбент с большой удельной поверхностью
  • только для аналитических целей и только в колонке

Разновидности газовой хроматографии

  1. газо-твердофазная (газо-адсорбционная)
  2. газо-жидкостная

Требования к веществам для газовой хроматографии

  • летучесть (или предварительный перевод в летучие производные)
  • инертность
  • термическая устойчивость (до 350)
  • молярная масса до 400

Достоинства газовой хроматографии

  • один из наиболее распространенных методов анализа
  • неразрушающий метод анализа
  • высокая разрешающая способность
  • низкий предел обнаружения
  • высокая чувствительность
  • экспрессность
  • точность
  • совместимость с большим типом детекторов

Газо-адсорбционная хроматография

Газо-адсорбционная хроматография (ГАХ) – адсорбционная хроматография.
Разделение в газо-адсорбционной хроматографии достигается за счет различной адсорбции на НФ.

Неподвижная фаза

НФ определяет селективность.

Типы НФ

  1. Твердые адсорбенты
  2. Жидкости на твердом носителе
  3. Химически связанные жидкие фазы

Особые требования к адсорбентам в ГАХ

  • высокая удельная поверхность
  • отсутствие каталитической активности
  • химическая инертность
  • малая летучесть
  • термическая устойчивость
  • физическая сорбция хроматографируемых соединений
  • однородность структуры

Применение газо-адсорбционной хроматографии

  • анализ газов
  • анализ низкомолекулярных веществ (не должные содержать активных функциональных групп)
  • определение воды в неорганических и органических материалах, анализ
  • анализ летучих гидридов металлов

Преимущества и недостатки газо-адсорбционной хроматографии

Преимущества:

  • большое время жизни колонок
  • возможность разделения стереоизомеров, неорганических газов и других смесей соединений, которые проблематично хроматографировать другими методами

Недостатки:

  • сильное удерживание полярных и высококипящих веществ ⇒ большое время анализа, низкие, широкие пики
  • возможность протекания каталитических процессов на поверхности сорбента
  • сложность получения однородных сорбентов ⇒ плохая воспроизводимость времен удерживания, асимметричность хроматографических пиков

Газо-жидкостная хроматография

ГЖХ – распределительная хроматография.НФ – высокомолекулярная жидкость, нанесенная на твердый носитель.Разделение достигается за счет различной растворимости компонентов образца в ПФ и НФ.

Наиболее распространенный метод аналитической ГХ.

Решающий фактор – селективная абсорбция компонентов смеси неподвижной жидкой фазой (абсорбентом).Абсорбция сводится к избирательному растворению газа или пара хроматографируемого вещества пленкой жидкости (НФ).

Насадочная колонка, либо по внутренней поверхности тонкого капилляра (капиллярная колонка).

Требования к жидкой фазе

  1. должна хорошо растворять компоненты смеси
  2. инертность
  3. малая летучесть (чтобы не испарялась при рабочей температуре колонки)
  4. термическая устойчивость
  5. высокая селективность
  6. небольшая вязкость (иначе замедляется процесс диффузии)
  7. способность образовывать при нанесении на носитель равномерную пленку, прочно с ним связанную

Вещества, используемые в качестве жидкой фазы:

  • Неполярные парафины (сквалан)
  • вазелиновое масло, апиезоны
  • кремнийорганические полимеры
  • карборансиликоновые жидкие фазы (самые термостабильные)
  • умеренно полярные жидкости, полярные (гидроксиламины, полиэтиленгликоли (карбоваксы))

Носители НЖФ

Применяются те же сорбенты, используемые в других видах хроматографии.
Главное назначение — удержание пленки НЖФ.

Требования к НЖФ:

  • умеренная удельная поверхность
  • прочность
  • изопористость
  • низкая пористость, неглубокие поры – избежать застойных явлений, чтобы вещество не задерживалось
  • химическая инертность (минимизировать адсорбцию на границе газ-носитель)
  • термическая устойчивость

Химически связанные НФ

Получают химической модификацией поверхности твердого носителя (обычно силикагеля) для обеспечения более хорошей связи, для предотвращения испарения жидкости при высокой температуре, повышения термостойкости.

Преимущества:

  • возможность нанести более тонкий и равномерный слой на носитель (по сравнению с жидкой фазой)
  • высокая эффективность
  • высокая термическая устойчивость
  • высокая устойчивость к растворителям (предотвращается смыв НФ с носителя, возможность регенерации)

Подвижная фаза

Газы-носители: Ar, He, H2, N2

Параметры, на которые влияет газ-носитель:

  • эффективность системы – низкомолекулярные газы (He, H2) имеют большие коэффициенты диффузии, поэтому обеспечивают эффективное и быстрое разделение
  • устойчивость ПФ и НФ – не инертные газы (H2, O2) способны взаимодействовать с веществами и материалами деталей хроматографа
  • сигнал детектора – некоторые детекторы требуют использования специальных газов

Газ-носитель не оказывает влияния на селективность (удерживание).

Основная характеристика – линейная скорость потока газа-носителя. Измеряется на выходе из колонки (мл/мин).

Газовый хроматограф

Принципиальная схема газового хроматографа1

  1. баллон с газом-носителем
  2. блок подготовки газа с регулятором скорости потока
  3. инжектор (испаритель)
  4. хроматографическая колонка с термостатом
  5. детектор
  6. регистрирующее устройство

Промышленные хроматографы

  1. Автоматические – контроль производственных процессов: производство легких бензинов, синтетического каучука, полимеров, аммиака, формалина (контроль за реакцией)
  2. Для препаративных целей

Блок подготовки газа-носителя

Разная оптимальная скорость потока для разных газов, обусловленная разницей в коэффициентах диффузии.

Инжектор

  • Инжектор обеспечивает точный, количественный отбор пробы.
  • Газовые пробы вводят шприцами или с помощью петли постоянного объема, жидкие вводят инъекционными шприцами в непрерывно движущийся поток газа-носителя.
  • Температура инжектора выдерживается на 20-50 выше, чем в колонке.
  • Инжектор может быть оборудован делителем потока для обеспечения дополнительного дозирования.

Колонки

Насадочные (набивные) – заполненные неподвижной фазой колонки из стекла или стали в форме спирали (1-5 м, диаметр 5-10 мм).

Капиллярные – кварцевые капилляры (длина 10-100 м, внутренний диаметр 100-500 мкм), на стенки которого нанесена жидкая фаза.

  • высокая эффективность
  • носитель (насадка) не используется

Предколонки (форколонки)

  • ставятся перед основной колонкой
  • меньше основной колонки по размеру

Задачи:

  1. концентрирование пробы из большого объема
  2. для защиты и предохранения основной колонки от гидроудара (из-за перепада давления)
  3. фильтрация от нелетучих примесей

Температура колонки

Факторы, определяющие температуру:

  • летучесть пробы
  • рабочий диапазоном температур колонки

Выбор температуры колонки сводится к достижению оптимального соотношения между скоростью хроматографического анализа, разрешающей способностью и чувствительностью.

Градиентное хроматографирование — изменение температуры (ступенчатое или линейное) в процессе хроматографии. Разделение сложной смеси компонентов путем варьирования температуры.

Градиентное изменение температуры является одним из способов решения основной проблемы хроматографии – уширение пика в процессе контакта с сорбентом. При изотерме пики уширяются со временем, при градиентном хроматографировании пики одинаково узкие.

Детекторы

Задача: регистрирование изменения физико-химических показателей.

Выбор детектора определяется природой хроматографируемых соединений, целями хроматографии, концентрацией веществ.

По виду зависимости сигнала детектора от скорости подвижной фазы

  1. Интегральные (практически не используюся)
  2. Дифференциальные:

1) концентрационные – сигнал пропорционален концентрации, высота пика не меняется, площадь меняется

2) потоковые – сигнал пропорционален количеству вещества, высота пика меняется, площадь не меняется

Зависимость сигнала детектора от скорости потока ПФ

Диапазон линейности детектора – важная характеристика детектора, диапазон, в котором зависимость сигнала детектора от скорости потока ПФ остается лиейной.

По деструктивной способности

  1. Деструктивные – в процессе детектирования вещество разрушается, не подходят для препаративной хроматографии
  2. Недеструктивные

По чувствительности

  1. с низкой чувствительностью (детектор по теплопроводности, детектор сечения ионизации)
  2. высокочувствительные (ионизационные детекторы)

Иногда используют последовательно несколько детекторов для увеличения чувствительности.

По селективности

  1. Универсальные
  2. Селективные (более чувствительные)

Некоторые виды детекторов газовой хроматографии

ДетекторПринцип работыПреимуществаНедостатки
Детектор по теплопроводности (катарометр)основан на изменении сопротивления нагретой проволоки (W, Pt, Ni)мост Уинстона, 4 спирали с высоким термическим сопротивлениемчем больше теплопроводность газа-носителя, тем больше чувствительность (очень высокую теплопроводность имеет водород, но его не используют ввиду взрывоопасности, а используют гелий)
  • недеструктивный
  • универсальный
  • позволяет проводить анализ газов
  • совместим с другими детекторами
  • требуется газ высокой степени очистки – 99,999% (А)
  • чувствителен к изменению скорости газа носителя (поэтому устанавливают постоянную скорость)
Для повышения чувствительности катарометра перед ним устанавливают конвектор.Углекислотный конвектор — органические вещества сжигаются на оксиде меди II, и сигнал становится пропорционален количеству вещества и количеству атомов углерода. Водородный конвектор – газом носителем выступает азот, органические вещества переводят в воду. Метановый конвектор – газом носителем выступает водород.
Пламенно-ионизационный детекторизменение сопротивления при сжигании образцадеструктивный метод – водородное пламя сжигает вещество , образуются ионы, сила тока увеличивается, сопротивление уменьшаетсячувствительность пропорциональна числу атомов углерода (ацил катионы, CHO+)
  • универсальный
  • газ-носитель не дает сигнал
  • низкий предел обнаружения
  • линейный динамический диапазон шире, чем у катарометра
  • чувствителен к изменению скорости газа-носителя
  • нельзя определять неорганические газы
Термоионный детекторстержень из соли щелочного металлаэмиссия увеличивает ток
  • высокочувствителен к соединения содержащими анионобразующие элементы (серу, мышьяк, фосфор, кислород, галогены)
  • анализ гербицидов, пестицидов, удобрений
Электронно-захватный детектор (ECD)захват медленных электронов электроотрицательными атомами в молекуле – достраивание электронной оболочки элементов до октета убывание ионного тока
  • низкий предел обнаружения
  • анализ галоген-, серо-, нитросодержащих соединений
  • анализ экотоксикантов, лекарственных средств, взрывчатых веществ
нечувствителен к углеводородам, спиртам
Гелиевый и аргоновый ионизационные детекторырадиоактивный источник (тритий, стронций 90)определение газов
Термохимический детекторкаталитическое окисление вещества на поверхности платиновой нитиизмерение тепового эффекта сжиганияиспользуется воздухвыделябщееся тепло повышает температуру нити (по аналогии с ПИД)для горючих веществ
  • отравление катаизатора – необходимо регулярно калибровать
  • трудно предсказуемая зависимость величины сигнала от степени окисления атомов углерода
Масс-селективный (масс-спектрометрический)радиоактивныйдля соединений, содержащих галогены, нитро-группы

Источник: http://studentoriy.ru/xromatografiya-lekciya-5-gazovaya-xromatografiya/

Капиллярная газовая хроматография

КАПИЛЛЯРНАЯ ХРОМАТОГРАФИЯ

МЕТОДЫ ИССЛЕДОВАНИЯ СТРУКТУРЫ и СВОЙСТВ ПОЛИМЕРОВ

Капиллярная газовая хроматография (КГХ) – один из наиболее молодых хроматографических методов, открытый в 1956-58 гг. швей­царским химиком Голеем [10, 11]. В результате активного развития царским химиком Голеем [10, 11].

В течение последующих десятиле­тий в результате активного своего развития данный метод в значи­тельной мере потеснил традиционную газовую хроматографию на на – садочных колонках и является в настоящее время основным: более 70% публикаций по газовой хроматографии в зарубежных журналах

Посвящено КГХ [12, 13].

Важным этапом в развитии КГХ явился переход от стеклян­ных колонок к кварцевым, что существенно упростило эксперимен­тальную технику и расширило области использования метода, по­скольку кварцевая поверхность более инертна по сравнению со стек­лянной.

Бурное развитие капиллярной хроматографии объясняется ря­дом ее преимуществ по сравнению с традиционным методом, основ­ным из которых является более высокая разделительная способность. Степень разделенияR как количественная характеристика процесса разделения в хроматографии выражается следующим образом:

R = ESC; Е = 0,25 №'5; S = (а-1)/а; С = к/(к+Г)>Где Е – показатель эффективности колонки;S – показатель селективно­сти колонки; С – показатель емкости колонки; N – число теоретиче­ских тарелок колонки; а – относительное удерживание двух компо­нентов, образующих критическую для разделения пару; к – коэффици­ент емкости разделяемого компонента.

Таким образом, продуктивность процесса разделения опреде­ляется тремя параметрами колонки: селективностью, эффективностью и емкостью. Во-первых, капиллярные колонки по эффективности в 3-5 раз превосходят насадочные; благодаря их большой длине различие в общей эффективности достигает 25-100 тысяч теоретических тарелок. Селективность разделения также выше у капиллярных колонок.

Во-вторых, капиллярные колонки позволяют разделять более широкий круг тяжелых (высококипящих) и термически нестабильных соединений. Это объясняется прежде всего меньшим количеством неподвижной жидкой фазы, а следовательно, пониженной величиной удерживания разделяемых компонентов.

В-третьих, на капиллярных колонках значительно выше ско­рость разделения. Это обусловлено возможностью быстрого массооб – мена хроматографируемых соединений между потоком подвижной газовой фазы и тонкой пленкой неподвижной жидкой фазы, а также более высокой скоростью газа-носителя.

В-четвертых, миниатюризация колонок обеспечивает более воспроизводимый температурный режим разделения, обусловленный меньшей тепловой инерцией колонок. Кроме того, тонкие капилляр­ные колонки позволяют уменьшить габариты аппаратуры, улучшить термостатирование, снизить расход сорбентов и газов-носителей.

К ограничениям КГХ относятся: необходимость изменения системы ввода проб и применения высокочувствительных детекторов с небольшим внутренним объемом; повышенные требования к инерт­ности внутренней поверхности колонок и аппаратуры; сложные мето­ды получения капилляров и методы нанесения пленки неподвижной фазы и ее иммобилизации, приводящие к удорожанию аппаратуры.

Капиллярная газовая хроматография применяется для опреде­ления свободной энергии, энтальпии и энтропии сорбции, давления насыщенных паров и коэффициентов активности соединений, а также для оценки липофильности летучих веществ и исследования свойств полимеров и жидких кристаллов [14].

Интересным примером служит использование этого метода при определении подлинности меда [15]. Для этого с помощью капиллярной газовой хроматографии определя­ют триметилсилильные производные олигосахаридов; настоящий мед содержит мало олигосахаридов, а инвертированные сиропы – много.

Чаще всего пользуются оптическими или радиоизотопными методами. Оптические методы предполагают исследование тонких плёнок, приготовленных из композиции. В образцах, которые обяза­тельно должны быть прозрачными, оценивается число частиц серы, однако этот метод …

Безроторные реометры

В безроторных реометрах поведение резиновой смеси в про­цессе вулканизации оценивается в колеблющейся полуформе. Крутя­щий момент, передаваемый через образец, измеряют датчиками в дру­гой полуформе, а непосредственное использование нагретых полу­форм сокращает продолжительность …

Исследование вулканизатов

Деструктивные процессы в вулканизационных сетках, проте­кающие при термоокислительном воздействии в поле механических нагрузок, обусловливают необратимую статическую и динамическую ползучесть (крип). Для эластомерных систем предлагается [36] новый метод ТМА, основанный на …

Источник: https://msd.com.ua/metody-issledovaniya-struktury-i-svojstv-polimerov/kapillyarnaya-gazovaya-xromatografiya/

Ваш педагог
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: