Композиционные материалы

Содержание
  1. История композиционных материалов
  2. Древние первооткрыватели
  3. Эра пластиков
  4. Ранние инновации в композиционных материалах: Вторая мировая
  5. Адаптация композитов
  6. Космос и авиация
  7. Оружие
  8. Современные полимерные композиционные материалы
  9. Как используют углеродные ткани?
  10. Нанотехнологии
  11. Медицина
  12. Заключение
  13. Композитные материалы — особенности свойств и основные виды
  14. Рынок композитов в России
  15. Применение композитных материалов в технике
  16. Авиация
  17. Ракетная техника
  18. Космические аппараты
  19. Автомобилестроение
  20. Композитный материал-технологии изготовления
  21. Напыление
  22. Ручная формовка
  23. Вакуумное формование
  24. Намотка
  25. Пултрузия
  26. RTM
  27. Автоклав
  28. В заключение
  29. Композитные материалы: что это такое, свойства, производство и применение
  30. За композитами – будущее?
  31. Основные типы
  32. Какой упрочнитель?
  33. Особенности производства
  34. Основные характеристики
  35. Полимерные материалы
  36. Стеклопластики
  37. Углепластики
  38. Органопластики
  39. В чем эффективность?
  40. Какие перспективы?
  41. Что такое композиционные материалы?
  42. Классификация композитов [править | править вики-текст]
  43. Преимущества композиционных материалов [править | править вики-текст]
  44. Недостатки композиционных материалов [править | править вики-текст]
  45. Высокая стоимость [править | править вики-текст]
  46. Анизотропия свойств [править | править вики-текст]
  47. Низкая ударная вязкость [править | править вики-текст]
  48. Высокий удельный объём [править | править вики-текст]
  49. Гигроскопичность [править | править вики-текст]
  50. Токсичность [править | править вики-текст]
  51. Низкая эксплуатационная технологичность [править | править вики-текст]
  52. Полимерные композиционные материалы: структура, свойства, технология
  53. Полимерные композиты
  54. Боропластик
  55. Полимеры порошкового наполнителя
  56. Текстолиты

История композиционных материалов

Композиционные материалы

Композиционный материал – это неоднородный сплошной материал из двух или более компонентов с чёткой разницей между ними. Самый простой пример – обычная клееная фанера. Но есть и гораздо более интересные технологии и материалы, используемые в авиастроении, автомобилестроении и других областях. Подробнее – под хабракатом.

Древние первооткрыватели

Два или более неоднородных материала используют вместе, чтобы создать новый уникальный материал или же улучшить характеристики одного из них.

Первое использование этого метода относится к 1500 году до нашей эры, когда в Египте и Месопотамии начали использовать глину и солому для строения зданий. Также солому вносили в состав для укрепления керамических изделий и лодок.

Кирпичи, в которых использовалась слома, называют «саман». Примерно так их делали египтяне: Следующая веха – это 1200 год нашей эры. Постарались монголы: они создали первый композиционный лук из таких материалов, как древесина, кость и животный клей.

Монгольский лук делали обычно из нескольких слоев древесины (в основном это была береза), которые склеивали с помощью животного клея. Роговые накладки помещали на внутренней стороне лука, закрепляя жилами.

Эра пластиков

Не было бы современных композитов, если бы ученые не придумали пластмассы. До этого единственным источником клея и связующих веществ служили природные смолы, которые получали из животных или растений. А в начале XX века разработали винил, полистирол, фенол и полиэстр.

Эти материалы значительно превосходили ранее используемые. Но и пластмассы не могли обеспечить достаточную прочность. Нужно было армирование получше, и в 1935 году фирма Owens/Corning разработала стекловолокно.

В сочетании с пластиковыми полимерами оно представляет собой чрезвычайно прочную и при этом очень легкую структуру. Это стало началом армированной полимерной промышленности. Первая реклама продукта из стекловолокна относится к 1939 году. Это воздушный фильтр компании Owens-Corning.

В 1957 году компания рекламировала шторы из стекловолокна с принтом. Еще кое-что из 1970 года – панели из стекловолокна для теплоизоляции при строительстве.

Ранние инновации в композиционных материалах: Вторая мировая

Множество изобретений в этой сфере были придуманы во время войн. Как монголы создали свой композиционный лук, так и Вторая мировая война позволила армированным полимерам перекочевать из лабораторий в реальный мир. Альтернативные материалы, позволяющие снизить вес конечного изделия, были необходимы в военном авиастроении.

Очень быстро инженеры поняли преимущества композитов в плане их веса и прочности. Также инженеры узнали о таком преимуществе композитов из стекловолокна, как радиопроницаемость. И начали применять «обтекатели», защищающие радиомодули от внешних факторов, в том числе ветра.

Во время войны Германия пыталась также разработать самолет-невидимку, задолго до Stealth в США. Тогда необходимо было использовать в корпусе композитный материал, где между слоями фанеры находился бы наполнитель из легкой бальзы – дерева, растущего в Южной Америке.

Но в 1944 году этот материал для немцев был недостижим, поэтому пришлось использовать эрзац-композит «формхольц»: между слоями 1,5-миллиметровой фанеры была смесь пропитанных смолой древесных опилок и пористого угля.

Адаптация композитов

В общем, к концу войны небольшая ниша композиционной промышленности была заполнена. И теперь стояла непростая задача: как перейти с военных заказов на продукты мирного назначения. Среди очевидных вариантов были лодки. Первую лодку с композитным корпусом представили в 1946 году.

Примерно в то же время сделали доску для серфинга из стекловолокна. И появился метод “протяжки” – “пултрузия”, используемая в производстве полимерных композиционных материалов. Вот, например, схема сухой пултрузии. Метод значительно упрощал производство. Автомобили – еще одно важное направление для полимерных композитов.

В 1954 году в США в продаже появился первый спорткар, корпус которого сделан из стекловолокна: Kaiser-Darrin. Эта машинка разгонялась до 60 миль в час за 15,1 секунды. А максимальная скорость – чуть меньше 100 миль в час, то есть около 160 км/ч.

Такие характеристики стали достижимыми при движке в 90 лошадиных сил во много благодаря небольшому весу автомобиля — около 2200 фунтов, то есть 997 кг. В 1970-х материалы стали еще лучше и сложнее. Компания DuPont, а именно одна группа под управлением Стефани Кволек, разработала арамидные волокна, известные нам как кевлар.

Сейчас это общеизвестный материал, используемый в бронежилетах. Кевлар в пять раз прочнее стали. Создавали его материал для армирования автомобильных шин, он и сейчас применяется в этих целях. Также им армируют медные и волоконно-оптические кабели. Автомобильная шина Wrangler с использованием кевлара.

Рукав из кевлара с доком для iPhone. Кевлар применяется и в беспилотном авиастроении. Например, для дополнительной защиты беспилотного летательного аппарата RQ-11 Raven.

Космос и авиация

Алюминий и другие металлы при производстве деталей самолетов заменяют на композиты низкой плотности, что позволяет снизить массу самолетов. Это, в свою очередь, экономит топливо. Так что в гражданской авиации сейчас широко используются композиты.

В Boeing 787 DreamLiner из композитных материалов на основе углерода изготовлены 50% элементов фюзеляжа. Таким образом, этот самолет легче и прочнее обычного лайнера с алюминиевым фюзеляжем.

Двигатель Genx от General Electric также имеет в себе композитные материалы: из них изготовлены корпус, лопатки турбины и форсунки, впрыскивающие топливо в камеру внутреннего сгорания.

Оружие

Само собой, композиционные материалы используются при создании оружия. Например, межконтинентальная баллистическая ракета «Тополь-М»: она на 90% состоит из композитов, включая конструкции двигателей и головную часть.

Сменный ствол винтовки Christensen Arms, выполненный из углепластика. Винтовка построена на базе затворной группы Remington-700. Карабин Carbon Custom R-93 со сменными стволами. Приклады для винтовок, выполненные из композитных материалов.

Представлены на «Открытых инновациях» в прошлом году российским производителем ХК «Композит».

Современные полимерные композиционные материалы

Самая интересная группа композитов – полимеры. Это не фанера и не солома в кирпичах, а сложные в производстве материалы, иногда включающие работу даже на наноуровне (10 в -9 степени). Немного теории в этот раз.

Для армирования используют: углеродные ткани (карбон); арамидные ткани (кевлар); гибридные ткани (карбон + кевлар); однонаправленные гибридные ткани; стеклоткани; мультиаксиальные ткани; углеродные ленты; препреги.

Как используют углеродные ткани?

Для изготовления карбоновых деталей применяется как просто углеродное волокно с хаотично расположенными и заполняющими весь объем материала нитями, так и ткань (Carbon Fabric). Наиболее распространены такие виды плетений, как Plain, Twill, Satin.

Плотность ткани, или удельная масса, выраженная в г/м2, помимо типа плетения зависит от толщины волокна, которая определяется количеством угленитей. Данная характеристика кратна тысячи. Так, аббревиатура 1К означает тысячу нитей в волокне.

Часто мы можем услышать от пацанов на районе автомобилистов, что они «обклеили карбоном авто». Здесь речь на самом деле идет чаще не о полимерных композитах, а об обычной декоративной пленке, сделанной под карбон.

Никакого преимущества такая пленка не дает: вес деталей меньше не станет, в прочности тоже она не выиграет. Так что это погоня за модой и желание сделать собственное авто похожим на гоночные машины из Need For Speed.

В строительстве зданий и дорог, для армирования бетонным емкостей и хранилищ используется углепластиковая и стеклопластиковая арматура, инертная ко всем агрессивным средам, обладающая высокой прочностью и ожидаемым сроком службы 75 лет. Армировать при строительстве и после него можно и с внешней части: используя углеродную ленту, пропитанную двухкомпонентным эпоксидным составом. Картинку лучше, к сожалению, не нашел. Асфальт можно армировать с помощью добавления в него фибры. Вспомнили солому и глину в начале поста?

Нанотехнологии

Сами полимерные композиты вряд ли можно назвать нанотехнологичными, если нанотехнологии определять как «совокупность технологических методов и приемов, используемых при изучении, проектировании и производстве материалов, устройств и систем, включающих целенаправленный контроль и управление строением, химическим составом и взаимодействием составляющих их отдельных наномасштабных элементов (с размерами порядка 100 нм и меньше), которые приводят к улучшению, либо появлению дополнительных эксплуатационных и/или потребительских характеристик и свойств получаемых продуктов». Но в недавнее время на рынок вышли полимерные смолы, выполняющие роль связующего, которые, исходя из процесса их производства, вполне подпадают под определение нанотехнологии.

Медицина

Конечно, изначально военные разработки очень часто превращаются в продукты мирного времени и используются в том числе в медицине. Начнем со стоматологии. Пломбы вам ставили? С высокой вероятностью это были композиционные материалы.

Прямо при вас непосредственно перед установкой врач смешивает компоненты, после чего устанавливает на место и затем держит несколько минут ультрафиолетовую лампу. Это светоотверждаемые пломбы. Есть и пломбы химического отверждения.

Например, стеклоиономерный цемент из порошка и жидкости, в котором порошок — алюмофторсиликатное стекло с фтором, а жидкость — водный раствор полиакриловой кислоты. Композитные волокна используются при производстве ортезов. Ортез — это специальное приспособление, предназначенное для разгрузки, фиксации, активации или коррекции функций сустава или конечности.

Здесь имеются кортезы, бандажи, обувь и другие продукты. Само собой, протезы также делают из композиционных материалов. В случае с образцами для бегунов это просто необходимо, так как подобную гибкость и прочность другие материалы дать неспособны.

Заключение

Древнейший метод, который помогал делать кирпичи и луки прочнее, в сочетании с современными материалами дает неоценимые преимущества в различных сферах.

Среди них авиа- и автомобилестроение, космонавтика, медицина, включая стоматологию и протезирование, и строительство. Даже такая простая вещь, как арматура в бетонных конструкциях, теперь стала более технологичной, выполненной из стеклопластика и углепластика.

Пломбы у стоматолога, как я писал выше, также относятся к композитным материалам. Композиционные материалы прочно вошли в нашу жизнь, подчас абсолютно незаметно для нас.

Притом использование этого метода возможно даже в домашних условиях.

Я упоминал в одной из прошлых публикаций, что планирую сделать новые моды для своего квадрокоптера. Как только достигну в этом успеха — напишу.

  • композиционные материалы
  • композиты
  • композитные материалы
  • материаловедение

Хабы:

  • Научно-популярное
  • Нанотехнологии
  • Физика
  • 24 февраля 2015 в 17:35
  • 29 января 2015 в 15:36
  • 25 декабря 2014 в 18:21

Источник: https://habr.com/ru/post/362189/

Композитные материалы — особенности свойств и основные виды

Композиционные материалы

Композитные материалы (КМ) – говорят, первые упоминания о подобных материалах можно найти в Библии. Композит — это материал, состоящий из двух и более компонентов, которые усиливают и дополняют свойства друг друга. Благодаря чему, конечный  материал обладает свойствами, достижение которых невозможно каждым компонентом по отдельности.

Возьмем, к примеру, стеклопластик. Так, если бы какая то  деталь была полностью из стекла, она обладала бы очень большой теоретической прочностью на растяжение или сжатие. Но  на практике, многочисленные поверхностные трещины приводят к разрушению изделия задолго до достижения ее теоретической прочности.

 В таком же изделии из стеклопластика, рост какой-то конкретной микротрещины ограничится обрывом одного волокна. А полимерная матрица перераспределит нагрузку на оставшиеся волокна. Примерно так работает самая обычная стеклопластиковая арматура.

 Так же, при изготовлении изделия можно заложить направление волокон с учетом предполагаемых направлений нагрузки на изделие. Что позволит избежать излишнего количества материалов в «ненужных» нам направлениях.

Рынок композитов в России

Доля России в мировом производстве композитов минимальна. Емкость рынка композиционных материалов, делает производство КМ одним из наиболее перспективных направлений деятельности в нашей стране.  Если в 1970-е  мы были 4-е в мире по производству композитов, то сейчас не обеспечиваем и 3% мирового спроса.

Это в немалой степени обусловлено отсутствием своего сырья, до недавнего времени на долю импорта приходилось 90%.  Но программа импорта замещения работает и в композитной отрасли, так в 2015г. на территории Татарстана было открытие завода по производству углеродного волокна.

Предприятие, при выходе на полную мощность, способно полностью удовлетворить потребности российского рынка.

Так же, производство КМ в промышленном масштабе тормозит отсутствие единых технических регламентов в этой сфере. Главгосэкспертиза попросту не пропускает многие проекты в строительстве из-за отсутствия СНИПов на технологию.

Тем не менее, с помощью КМ в России усилено больше тысячи строительных объектов. Так в 2014г .

в Башкирии 5 мостов были усилены лентами (в основе которых углеродное волокно и эпоксидная смола) для провоза по ним крупногабаритного оборудования ОАО «Газпром» весом почти 100т.

Применение композитных материалов в технике

Полимерные КМ имеют неоспоримый ряд преимуществ в сравнении с металлоконструкциями. Таких как: эксплуатационно-технические, -экономические, технологические. Именно поэтому они (в основном углепластик и стеклопластик) получили широкое применение почти во всех отраслях промышленности.

Авиация

В самолетостроении композитные материалы начали применять еще с 1940-ых, в настоящее же время доля КМ в некоторых образцах достигает 50% (Boeing787 Dreamliner).

Из КМ изготавливаются такие детали как: обшивка, руль высоты, руль направления, обтекатели, воздухозаборники, закрылки и т.п.

К примеру: замена элементов крепления лопастей к ротору на стеклопластиковые, в некоторых моделях вертолетов, позволила снизить массу деталей на 40%, а стоимость в 2,5 раза.

Ракетная техника

Одними из первых стеклопластиковых деталей, примененных в 60-х годах, в ракетной технике, стали корпуса двигателей боевых ракет. Дальность таких ракет увеличилась с 1500 до 4000км. Сейчас, доля КМ в некоторых типах ракет доходит до 85-90% от общей массы.

Космические аппараты

Посчитано что экономическая выгода от снижения массы космического аппарата всего на 1кг составляет от10000 $ до 50 000 $. Наилучших показателей в снижении веса космических аппаратов удалось добиться только с применением КМ. К концу прошлого века доля композитов в конструкции составляла 20%.

Автомобилестроение

Применение композитов в машиностроении так же продолжает набирать обороты. Сейчас есть проекты создания автомобилей с максимальным применением КМ. Расход топлива такого автомобиля должен составить менее 2,5л на 100км.

Углепластик, стеклопластик, кевларопластик в основе которых эпоксидная и полиэфирная смола и многие другие виды КМ так же обширно применяются в судостроении, железнодорожном транспорте, спортивной технике, строительстве. В качестве только развивающихся видов техники можно выделить радиотехнику, военную технику, ортопедические протезы и современную бытовую технику.

Композитный материал-технологии изготовления

На конечные свойства изделия также влияет то, каким способом оно произведено.   Некоторые методы позволяют организовать производство композитов даже у себя в гараже.  И так, рассмотрим наиболее часто встречающиеся методы производства КМ:

Напыление

Рубленное волокно, перемешанное с катализированной смолой напыляется с помощью пистолета на оснастку.

Связующее : преимущественно, полиэфирная смола

Наполнитель: стекловолокно

Ручная формовка

Сухие армирующие волокна в виде полотен укладываются на матрицу, после чего наносится смола.

Вакуумное формование

После укладки и пропитки ткани как при ручной формовке, на стадии отверждения, применяется давление для укрепления ламината.

Связующее : чаще, эпоксидная смола или фенольная

Намотка

Волокна, пропитанные связующим, наматываются в различных направлениях на оправку. Пример: стеклопластиковые трубы или баллоны.

Пултрузия

Процесс производства профильных изделий из одноосно-ориентированных пластиков непрерывным способом, является аналогией экструзии металлов.

RTM

Сухой армирующий слой укладывается на оснастку, затем вторая часть оснастки закрывается и происходит инъекция смолы в полость.

Автоклав

Препрег (предварительно пропитанное волокно или ткань) выкладывается на поверхность оснастки. Затем оснастка нагревается  под давлением до 120-180 °С. Давление создается автоклавом, а высокая температура активирует катализатор в связующем.

Связующее: обычно эпоксидная, полиэфирная или фенольная смола

Наполнитель: чаще всего углеродное или стекловолкно.

В заключение

ХХI век давно называют веком композитных материалов, как были каменные и бронзовые века в древности. Композиты прочно вошли в нашу жизнь, изделия из углепластика и стеклопластика можно встретить во всех отраслях промышленности и в быту.

Ясно, что у российского рынка композитов колоссальный потенциал. Производству ПКМ способствуют различные Государственные программы.

 Технология изготовления изделий из композиционных материалов вошла в число 27 приоритетных направлений, предусмотренных Указом №899 «Об утверждении приоритетных направлений развития науки, технологий и техники в РФ и перечня критических технологий РФ».

Владение базовой теорией композитов может пригодиться и в быту от ремонта стеклопластиковой душевой кабины до упрочнения фундамента домов углеродной лентой. О перспективах компаний производящих композитные материалы  не приходиться и говорить.

Буду признателен за любую обратную связь. Спасибо!

Источник: https://composite-materials.ru/osobennosti-svojstv-i-osnovnye-vidy.html

Композитные материалы: что это такое, свойства, производство и применение

Композиционные материалы

В различных сферах промышленности используются композитные материалы.

Что это такое? Это материалы на основе нескольких компонентов, что обусловливает их эксплуатационные и технологичные характеристики.

В основе композитов лежит матрица на основе металла, полимера или керамики. Дополнительное армирование выполняется наполнителями в виде волокон, нитевидных кристаллов и различных частиц.

За композитами – будущее?

Пластичность, прочность, широкая сфера применения – вот чем отличаются современные композитные материалы. Что это такое с точки зрения производства? Эти материалы состоят из металлической или неметаллической основы. Для усиления материала используются нити, волокна, хлопья большей прочности.

Среди композиционных материалов можно выделить пластик, который армируется борными, углеродными, стеклянными волокнами, или алюминий, армированный стальными или бериллиевыми нитями. Если комбинировать содержание компонентов, можно получать композиты разной прочности, упругости, стойкости к абразивам.

Основные типы

Классификация композитов основана на их матрице, которая может быть металлической и неметаллической. Материалы с металлической матрицей на основе алюминия, магния, никеля и их сплавов обретают дополнительную прочность за счет волокнистых материалов или тугоплавких частиц, которые не растворяются в основном металле.

Композиты с неметаллической матрицей в основе имеют полимеры, углерод или керамику. Среди полимерных матриц наиболее популярны эпоксидная, полиамидная и фенолформальдегидная. Форма композиции придается за счет матрицы, которая выступает своеобразным связующим веществом. Для упрочнения материалов используются волокна, жгуты, нити, многослойные ткани.

Изготовление композитных материалов ведется на основе следующих технологических методов:

  • пропитка армирующих волокон матричным материалом;
  • формование в пресс-форме лент упрочнителя и матрицы;
  • холодное прессование компонентов с дальнейшим спеканием;
  • электрохимическое нанесение покрытия на волокна и дальнейшее прессование;
  • осаждение матрицы плазменным напылением и последующее обжатие.

Какой упрочнитель?

Во многих сферах промышленности нашли применение композитные материалы. Что это такое, мы уже сказали. Это материалы на основе нескольких компонентов, которые обязательно упрочняются специальными волокнами или кристаллами. От прочности и упругости волокон зависит и прочность самих композитов. В зависимости от вида упрочнителя все композиты можно поделить:

  • на стекловолокниты;
  • карбоволокниты с углеродными волокнами;
  • бороволокниты;
  • органоволокниты.

Упрочнительные материалы могут укладываться в две, три, четыре и больше нити, чем их больше, тем прочнее и надежнее в эксплуатации будут композиционные материалы.

Отдельно стоит упомянуть древесный композит. Он получается посредством сочетания сырья разного типа, при этом в качестве основного компонента выступает древесина. Каждый древесно-полимерный композит состоит из трех элементов:

  • частиц измельченной древесины;
  • термопластичного полимера (ПВХ, полиэтилена, полипропилена);
  • комплекса химических добавок в виде модификаторов – их в составе материала до 5 %.

Самый популярный вид древесных композитов – это композитная доска. Ее уникальность в том, что она объединяет в себе свойства и древесины, и полимеров, что существенно расширяет сферу ее применения. Так, доска отличается плотностью (на ее показатель влияет базовая смола и плотность древесинных частичек), хорошим сопротивлением на изгиб.

При этом материал экологичный, сохраняет текстуру, цвет и аромат натурального дерева. Использование композитных досок абсолютно безопасно. За счет полимерных добавок композитная доска обретает высокий уровень износостойкости и влагостойкости.

Ее можно использовать для отделки террас, садовых дорожек, даже если на них приходится большая нагрузка.

Особенности производства

Древесные композиты имеют особенную структуру за счет сочетания в них полимерной основы с древесиной. Среди материалов подобного типа можно отметить древесно-стружечные, древесноволокнистые плиты разной плотности, плиты из ориентированной щепы и древесно-полимерный композит. Производство композитных материалов данного типа ведется в несколько этапов:

  1. Измельчается древесина. Для этого используются дробилки. После дробления древесину просеивают и делят на фракции. Если влажность сырья – выше 15 %, его обязательно высушивают.
  2. Дозируются и смешиваются основные компоненты в определенных пропорциях.
  3. Готовое изделие прессуется и форматируется для обретения товарного вида.

Основные характеристики

Мы описали самые популярные полимерные композитные материалы. Что это такое, теперь понятно. Благодаря слоистой структуре есть возможность армирования каждого слоя параллельными непрерывными волокнами. Стоит отдельно сказать о характеристиках современных композитов, которые отличаются:

  • высоким значением временного сопротивления и предела выносливости;
  • высоким уровнем упругости;
  • прочностью, которая достигается армированием слоев;
  • за счет жестких армирующих волокон композиты обладают высокой стойкостью к напряжениям на разрыв.

Композиты на основе металлов отличаются высокой прочностью и жаропрочностью, при этом они практически неэластичны. За счет структуры волокон уменьшается скорость распространения трещин, которые иногда появляются в матрице.

Полимерные материалы

Полимерные композиты представлены в многообразии вариантов, что открывает большие возможности по их использованию в разных сферах, начиная от стоматологии и заканчивая производством авиационной техники. Наполнение композитов на основе полимеров выполняется разными веществами.

Наиболее перспективными сферами использования можно считать строительство, нефтегазовую промышленность, производство автомобильного и железнодорожного транспорта. Именно на долю этих производств приходится порядка 60 % объема использования полимерных композиционных материалов.

Благодаря высокой устойчивости полимерных композитов к коррозии, ровной и плотной поверхности изделий, которые получаются методом формования, повышается надежность и долговечность эксплуатации конечного продукта.

Рассмотрим популярные виды полимерных материалов.

Стеклопластики

Для армирования этих композиционных материалов используются стеклянные волокна, сформованные из расплавленного неорганического стекла.

Матрица основывается на термоактивных синтетических смолах и термопластичных полимерах, которые отличают высокая прочность, низкая теплопроводность, высокие электроизоляционные свойства. Изначально они использовались при производстве антенных обтекателей в виде куполообразных конструкций.

В современном мире стеклопластики широко применяются в строительной сфере, судостроении, производстве бытового инвентаря и спортивных предметов, радиоэлектронике.

В большинстве случаев стеклопластики производятся на основе напыления. Особенно эффективен этот метод при мелко- и среднесерийном производстве, например корпусов катеров, лодок, кабин для автомобильного транспорта, железнодорожных вагонов. Технология напыления удобна экономичностью, так как не требуется раскраиваться стекломатериал.

Углепластики

Свойства композитных материалов на основе полимеров дают возможность использовать их в самых разных сферах. В них в качестве наполнителя используются углеродные волокна, получаемые из синтетических и природных волокон на основе целлюлозы, пеков. Волокно обрабатывается термически в несколько этапов.

По сравнению со стеклопластиками углепластики отличаются более низкой плотностью и более высоким модулем упругости при легкости и прочности материала.

Благодаря уникальным эксплуатационным свойствам углепластики находят применение в машино- и ракетостроении, производстве космической и медицинской техники, велосипедов и спортивных принадлежностей.

Это многокомпонентные материалы, в основе которых лежат борные волокна, введенные в термореактивную полимерную матрицу. Сами волокна представлены мононитями, жгутами, которые оплетаются вспомогательной стеклянной нитью.

Большая твердость нитей обеспечивает прочность и стойкость материала к агрессивным факторам, но при этом боропластики отличаются хрупкостью, что осложняет обработку.

Борные волокна стоят дорого, поэтому сфера применения боропластиков ограничена в основном авиационной и космической промышленностью.

Органопластики

В этих композитах в качестве наполнителей выступают в основном синтетические волокна – жгуты, нити, ткани, бумага.

Среди особенных свойств этих полимеров можно отметить низкую плотность, легкость по сравнению со стекло- и углепластиками, высокую прочность при растяжении и высокое сопротивление ударам и динамическим нагрузкам.

Этот композиционный материал широко используется в таких сферах, как машино-, судо-, автостроение, при производстве космической техники, химическом машиностроении.

В чем эффективность?

Композитные материалы за счет уникального состава могут использоваться в самых разных сферах:

  • в авиации при производстве деталей самолетов и двигателей;
  • космической технике для производства силовых конструкций аппаратов, которые подвергаются нагреванию;
  • автомобилестроении для создания облегченных кузовов, рам, панелей, бамперов;
  • горной промышленности при производстве бурового инструмента;
  • гражданском строительстве для создания пролетов мостов, элементов сборных конструкций на высотных сооружениях.

Использование композитов позволяет увеличить мощность двигателей, энергетических установок, уменьшая при этом массу машин и оборудования.

Какие перспективы?

По мнению представителей сферы промышленности России, композиционный материал относится к материалам нового поколения. Планируется, что к 2020 году вырастут объемы внутреннего производства продукции композитной отрасли. Уже сейчас на территории страны реализуются пилотные проекты, направленные на разработку композитных материалов нового поколения.

Применение композитов целесообразно в самых разных сферах, но наиболее эффективно оно в отраслях, связанных с высокими технологиями. Например, сегодня ни один летательный аппарат не создается без использования композитов, а в некоторых из них используется порядка 60 % полимерных композитов.

Благодаря возможности совмещения различных армирующих элементов и матриц можно получить композицию с определенным набором характеристик. А это, в свою очередь, дает возможность применять эти материалы в самых разных сферах.

Источник: https://FB.ru/article/264869/kompozitnyie-materialyi-chto-eto-takoe-svoystva-proizvodstvo-i-primenenie

Что такое композиционные материалы?

Композиционные материалы

Композицио́нный материа́л (КМ), компози́т — искусственно созданный неоднородный сплошнойматериал, состоящий из двух или более компонентов с чёткой границей раздела между ними.

В большинстве композитов (за исключением слоистых) компоненты можно разделить на матрицу (илисвязующее) и включённые в неё армирующие элементы (или наполнители).

В композитах конструкционного назначения армирующие элементы обычно обеспечивают необходимые механические характеристики материала (прочность, жёсткость и т. д.), а матрица обеспечивает совместную работу армирующих элементов и защиту их от механических повреждений и агрессивной химической среды.

Механическое поведение композиции определяется соотношением свойств армирующих элементов и матрицы, а так же прочностью связей между ними. Характеристики создаваемого изделия, как и его свойства, зависят от выбора исходных ком­понентов и технологии их совмещения.

В результате совмещения армирующих элементов и матрицы образуется композиция обладающая набором свойств, отражающими не только исходные характеристики его компонентов, но и включающий новые свойства, которыми изолированные компоненты не обладают.

В частности, наличие границ раздела между армирующими элементами и матрицей существенно повышает трещиностойкость материала, и в композициях, в отличие от однородныхметаллов, повышение статической прочности приводит не к снижению, а, как правило, к повышению характеристик вязкости разрушения.

Для создания композиции используются самые разные армирующие наполнители и матрицы.

Это — гетинакс и текстолит (слоистые пластики из бумаги или ткани, склеенной термореактивным клеем), стекло- и графитопласт (ткань или намотанное волокно из стекла или графита, пропитанные эпоксидными клеями), фанера… Есть материалы, в которых тонкое волокно из высокопрочных сплавов залито алюминиевой массой. Булат — один из древнейших композиционных материалов. В нём тончайшие слои (иногда нити) высокоуглеродистой стали «склеены» мягким низкоуглеродным железом.

В последнее время материаловеды экспериментируют с целью создать более удобные в производстве, а значит — и более дешёвые материалы. Исследуются саморастущие кристаллические структуры, склеенные в единую массу полимерным клеем (цементы с добавками водорастворимых клеев), композиции из термопласта с короткими армирующими волоконцами и пр.

Классификация композитов

[править | править вики-текст]

Композиты обычно классифицируются по виду армирующего наполнителя:[1]

  • волокнистые (армирующий компонент — волокнистые структуры);
  • слоистые;
  • наполненные пластики (армирующий компонент — частицы)
    • насыпные (гомогенные),
    • скелетные (начальные структуры, наполненные связующим).

Также композиты иногда классифицируют по материалу матрицы:

Преимущества композиционных материалов

[править | править вики-текст]

Главное преимущество КМ в том, что материал и конструкция создается одновременно. Исключением являются препреги, которые являются полуфабрикатом для изготовления конструкций.

Стоит сразу оговорить, что КМ создаются под выполнение данных задач, соответственно не могут вмещать в себя все возможные преимущества, но, проектируя новый композит, инженер волен задать ему характеристики значительно превосходящие характеристики традиционных материалов при выполнении данной цели в данном механизме, но уступающие им в каких-либо других аспектах. Это значит, что КМ не может быть лучше традиционного материала во всём, то есть для каждого изделия инженер проводит все необходимые расчёты и только потом выбирает оптимум между материалами для производства.

Причём, разные классы композитов могут обладать одним или несколькими преимуществами. Некоторых преимуществ невозможно добиться одновременно.

Недостатки композиционных материалов

[править | править вики-текст]

Композиционные материалы имеют достаточно большое количество недостатков, которые сдерживают их распространение.

Высокая стоимость

[править | править вики-текст]

Высокая стоимость КМ обусловлена высокой наукоёмкостью производства, необходимостью применения специального дорогостоящего оборудования и сырья, а следовательно развитого промышленного производства и научной базы страны.

Однако это справедливо лишь при замене композитами простых прокатных изделий из черных металлов. В случае легких изделий, изделий сложной формы, коррозионно-стойких изделий, высокопрочных диэлектрических изделий композиты оказываются в выигрыше.

Причем стоимость композитных изделий зачастую оказывается ниже аналогов из цветных металлов или нержавеющей стали.

Анизотропия свойств

[править | править вики-текст]

Анизотропия — зависимость свойств КМ от выбора направления измерения. Например, модуль упругости однонаправленного углепластика вдоль волокон в 10-15 раз выше, чем в поперечном.

Для компенсации анизотропии увеличивают коэффициент запаса прочности, что может нивелировать преимущество КМ в удельной прочности. Таким примером может служить опыт применения КМ при изготовлении вертикального оперения истребителя МиГ-29.

Из-за анизотропии применявшегося КМ вертикальное оперение было спроектировано с коэффициентом запаса прочности кратно превосходящим стандартный в авиации коэффициент 1,5, что в итоге привело к тому, что композитное вертикальное оперение Миг-29 оказалось равным по весу конструкции классического вертикального оперения, сделанного из дюралюминия.

Тем не менее, во многих случаях анизотропия свойств оказывается полезной.

Например трубы, работающие при внутреннем давлении испытывают в два раза большие разрывающие напряжения в окружном направлении по сравнении с осевым.

Следовательно труба не должна быть равнопрочной во всех направления. В случае композитов это условие легко обеспечить, увеличив вдвое армирование в окружном направлении по сравнению с осевым.

Низкая ударная вязкость

[править | править вики-текст]

Низкая ударная вязкость также является причиной необходимости повышения запаса прочности. Кроме этого, низкая ударная вязкость обуславливает высокую повреждаемость изделий из КМ, высокую вероятность возникновения скрытых дефектов, которые могут быть выявлены только инструментальными методами контроля.

Высокий удельный объём

[править | править вики-текст]

Высокий удельный объем является существенным недостатком при применении КМ в областях с жесткими ограничениями по занимаемому объёму. Это относится, например, к области сверхзвуковой авиации, где даже незначительное увеличение объёма самолёта приводит к существенному ростуволнового аэродинамического сопротивления.

Гигроскопичность

[править | править вики-текст]

Композиционные материалы гигроскопичны, то есть склонны впитывать влагу, что обусловлено несплошностью внутренней структуры КМ.

При длительной эксплуатации и многократном переходе температуры через 0 по Цельсию вода, проникающая в структуру КМ, разрушает изделие из КМ изнутри (эффект по природе аналогичен разрушению автомобильных дорог в межсезонье).

Справедливости ради нужно отметить, что указанный недостаток относится к композитам первых поколений, которые имели недостаточно эффективное сцепление связующего с наполнителем, а также большой объем каверн в матрице связующего.

Современные типы композитов с высокой адгезией связующего к наполнителю (достигается применением специальных замасливателей), получаемые методами вакуумного формования с минимальным количеством остаточных газовых каверн этому недостатку неподвержены, что позволяет в частности строить композитные корабли, производить композитную арматуру и композитные опоры воздушных линий электропередач.

Тем не менее КМ могут впитывать другие жидкости, обладающие высокой проникающей способностью, например, авиационный керосин или другие нефтепродукты.

Токсичность

[править | править вики-текст]

При эксплуатации КМ могут выделять пары, которые часто являются токсичными.

Если из КМ изготавливают изделия, которые будут располагаться в непосредственной близости от человека (таким примером может послужить композитный фюзеляж самолета Boeing 787 Dreamliner), то для одобрения применяемых при изготовлении КМ материалов требуются дополнительные исследования воздействия компонентов КМ на человека.

Низкая эксплуатационная технологичность

[править | править вики-текст]

Композиционные материалы могут иметь низкую эксплуатационную технологичность, низкую ремонтопригодность и высокую стоимость эксплуатации. Это связано с необходимостью применения специальных трудоёмких методов (а подчас и ручного труда), специальных инструментов для доработки и ремонта объектов из КМ. Часто изделия из КМ вообще не подлежат какой-либо доработке и ремонту.

Источник: https://ru.wikipedia.org/wiki/%CA%EE%EC%EF%EE%E7%E8%F6%E8%EE%ED%ED%%E9_%EC%E0%F2%E5%F0%E8%E0%EB

Источник: https://mircompozitov.ucoz.ru/publ/kompozicionnye_materialy/chto_takoe_kompozicionnye_materialy/2-1-0-1

Полимерные композиционные материалы: структура, свойства, технология

Композиционные материалы

Сами по себе композиты давно стали основой многих отраслей промышленности. Материал зовется композиционным ввиду структуры. Матрицу-пластификатор армируют различными органическими и неорганическими материалами и получается полимерный композитный материал. ПКМ — это фактически Лего из мира органической химии.

Если комбинировать матрицу и наполнитель, рассчитывать разные пропорции, то можно легко получить материалы гораздо лучше «традиционных», при этом они в основном намного легче обыкновенного армирования.

Свойства полимерных композитов становятся все доступнее и уже применяются не только в области космических технологий, но и как более доступная основа для бытовых приборов.

Компонентами композитов может быть практически что угодно. Тут используется пластик, практически все металлы, полимерные волокна и т.д.

Существуют еще более сложные композиты — полиматричные, если основой используют несколько различных полимеров для матрицы, а также гибридные варианты, при которых комбинируются армирующие волокна.

Матрица-пластификатор отвечает за монолитность материала, тогда как армирующий наполнитель дает ему заданные параметры жесткости, деформации, прочности на излом, кручение и т. д.

Компания «Юнитрейд» занимается поставкой различных полимеров на основе нефти и не только. Вариации того, какие ПКМ сейчас может предложить миру химпром, рассмотрим ниже, с кратким экскурсом в особенности материалов.

Полимерные композиты

Полимерными композитами называется материал с соответствующей матрицей. Они наиболее популярны среди отраслей народного хозяйства. Современная аэрокосмическая отрасль уже немыслима без ПКМ.

Например, в последнем поколении французского штурмового истребителя Дассо Рафаль ПКМ составляют почти четверть планера. Полимерные композитные материалы не корродируют, меньше страдают от статического электричества, не требуют дорогостоящих покрасочных эмалей, весьма легкие.

Обратная сторона — материал недешевый, но кумулятивный экономический эффект очевиден сразу.

Боропластик

Композиционный материал на полимерной основе, прошитый борными волокнами на полимерной матрице из термореактивного вещества. Волокна могут существовать как одинарные нити, и могут быть свиты жгутами, в результате чего получается сверхпрочный и твердейший материал.

Армированный бором пластик наиболее устойчив химически и на сжатие, однако на излом он оказывается чрезвычайно хрупким. Борное волокно невероятно тяжело обрабатывать, потому итоговый ПКМ с бором оказывается дорогим — сотни долларов за килограмм только волокон, без учета матрицы.

Для этого ПКМ нужны очень дорогие катализаторы, а рабочая температура сильно ограничена.

Полимеры порошкового наполнителя

Также известнейшее изобретение. В начале прошлого века Лео Бакеланд патентует бакелит, который был сделан на матрице ФФМ-смолы или бакелита. Фенолформальдегидные смолы очень хрупки, однако если их перемешать с древесной мукой — они сильно упрощаются.

Бакелит — идеальный материал под формовку, из него делали все: рычаги селекторов КПП, телефоны, отливные лотки для других материалов. Фактически, это самый распространенный в мире композитный материал ХХ века, деливший популярность с эбонитом, но вытеснивший его из многих областей.

Сегодня область порошкообразных наполнителей «впитала» практически всю неорганику. Каолины, мел, мергели, известняки в связке с ПВХ и иными низкополимерными полимерами заполонили рынок ПКМ и есть почти во всех бытовых приборах. Они дешевы, а их сырьевые источники практически неисчерпаемы.

Одновременно, простой рекомбинацией порошка и матрицы можно получить практически любую прочность, упругость, требуемую термостойкость.

Текстолиты

Также уже исторический материал. Бралась плотная ткань вроде льняной или полотняной, заливалась фенолформальдегидной смолой, а в дальнейшем горячим прессом выходили пластины.

Один из типов таких ПКМ — линкруст, известный всем по обшивке старых вагонов пригородных поездов и городского транспорта. Глобальный недостаток первых текстолитов — чрезвычайная горючесть на фоне выделения очень едкого дыма.

Проблема была решена отказом от фенолформальдегида в пользу менее токсичных матриц, а также использованием новых типов полотна. Таким образом, компания Юнитрейд представляет рынку большую часть ПКМ, имеющихся в свободной продаже, на любые технические нужды и возможности кошелька.

Приобретение композитных материалов всегда означает расширение технологического ряда в пользу улучшенных физических качеств, химической стойкости, долговечного использования.

Источник: https://unitreid-group.com/poleznoe/polimernye-kompozitsionnye-materialy/

Ваш педагог
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: