Натуральные пластмассы, полимеры

Содержание
  1. Пластмассы и природные полимеры
  2. Как делают пластмассу
  3. Синтетические волокна
  4. Свойства пластмасс
  5. Природные полимеры
  6. Биоразлагаемые полимеры
  7. Борьба с пакетами
  8. Отходы бактерий
  9. Клетка – завод мономеров
  10. Добавки-разрушители
  11. Смена парадигмы
  12. Биоразлагаемый пластик: варианты его производства, применения
  13. Вред обычного пластика
  14. Что такое биоразлагаемый пластик
  15. Технология производства
  16. Синтетические полимеры с катализаторами
  17. Натуральные полимеры
  18. Основные производители
  19. Преимущества и недостатки
  20. Сферы применения
  21. Маркировка биоразлагаемой продукции
  22. Методы утилизации
  23. Процесс и скорость разложения полимеров
  24. Полимеры, волокна, каучуки
  25. Классификация по структуре
  26. Классификация по происхождению
  27. Классификация по химическому характеру
  28. Классификация по способу получения
  29. Свойства полимеров
  30. Полимеризация
  31. Поликонденсация

Пластмассы и природные полимеры

Натуральные пластмассы, полимеры

Полимеры состоят из небольших молекул, соединенных в длинные цепи. Пластмасса и синтетические волокна. например нейлон, — полимеры, полученные из содержащихся в нефти соединений. Помимо синтетических, существуют природные полимеры — резина, крахмал, шерсть, шелк и даже волосы человека. Пластик может принимать любую форму благодаря формовке.

Как делают пластмассу

Пластмассы — это синтетические полимеры, состоящие из органических соединений, входящих в состав нефти. Множество пластмасс, включая полиэтилен,  поливинилхлорид и полистирол получают из этилена — одного из алканов. Полиэтилен и полистирол можно расплавить и затем делать из них посуду. В тонкие листы полиэтилена упаковывают продукты.

Этилен — ненасыщенное соединение т.е. в нем есть двойные ковалентные связи, по которым могут присоединяться новые атомы. Термин «двойная связь» оз­начает, что у двух атомов есть две общие пары электронов. В состав молекулы этилена (C2H4) входят два атома углерода, соединенные двойной ковалентной связью. Двойная связь может открыться и присоединить новые атомы.

При нагревании, высоком давлении и в присутствии катализатора молекулы этиле­на могут реагировать друг с другом. При этом двойные связи раскрываются, атомы углерода соединяются и образуют длинные цепочки — огромные молекулы по­лиэтилена.Такое соединение молекул называется полимеризацией.

Небольшие молекулы, из которых состоит молекула полимера, называются мономерами. Гигантская молекула полиэтилена может содержать до 20 000 атомов углерода.  При замене некоторых атомов в мономерах на другие можно получать разные виды пластмасс.

Поливинилхлорид (ПВХ) образуется при замещении атомов водорода в этилене атомами хлора: при этом образует­ся хлорэтилен. Молекула ПВХ состоит из длинной цепочки мономеров – молекул хлорэтилена.

Пластмассы делятся на две группы. Термопластичные пластмассы можно расплавить и использовать вновь, а термореактивные расплавить вновь нельзя. В термопластичных пластмассах полимерные цепочки не связанны между собой. В термореактивных пластмассах полимерные цепи жестко связаны друг с другом.

Термопластичные пластмассы – такие, как полиэтилен, полистирол, нейлон, — гибкие, но не термостойкие. Эти пластмассы можно перерабатывать по нескольку раз, но пока это мало применяется. Термореактивные пластмассы используются только один раз. Они имеют жесткую структуру, они тверды и теплостойки.

Эбонит, из кото­рого делают посуду, относится к термореактивным пластмассам.

Синтетические волокна

Из некоторых пластмасс, например из нейлона, полистирола и акрила, можно делать волокна. Их можно прясть, как шерсть и хлопок, делать из них одежду ковры, веревки и прочные ткани для парусов и парашютов.

Синтетические волокна, например лайкра, гладкие и легкие. Они помогают уменьшить вес и трение, что важно для танцоров и спортсменов. Синтетические волокна прочнее и лег­че натуральных — шерсти, хлопка.

К тому же из синтетических волокон, в отличие от натуральных, можно сделать очень длинные нити.

Свойства пластмасс

Здесь вы найдете описание множества ­полезных свойств пластмасс. Некоторые свойства пластмасс создают трудности. Пластмассы не подвержены гниению и коррозии, поэтому их нелегко уничтожить, а некоторые из них при горении выделяют ядовитые газы.

Впрочем, сейчас уже разработаны новые сорта пластмасс, поддающихся биологическому разложению. Первые пластмассы были получены более 170 лет назад. Тогда был создан целлулоид, а позднее – бакелит. В начале XX века из бакелита делали корпуса радиоприемников и телефонов.

Сейчас телефоны не делают из бакелита, а из значительно более легких материалов. Полиэтилен, полистирол и нейлон появились в 1930 годах. В упаковке из полистирола еда долго не остывает. Пенополистирол —   прекрасный изолятор, к тому же он очень легок. Из него делают упаковки для продуктов и бьющихся приборов.

Современные паруса делают из чрезвычайно прочных и легких синтетических волокон, например майлара. Тефлон (политетрафторэтилен) делает поверхность сковородок гладкими, и к ним ничего не прилипает. Компакт-диски делают из поликарбоната. Затем их покрывают тонким слоем алюминия.

Пластмассы не проводят электричество, поэтому из них делают вилки и розетки, а также изоляцию для проводов. В аэрокосмической промышленности используются композитные материалы – пластмассы, укрепленные стеклянным волокнами.

Природные полимеры

До изобретения пластмасс в текстильной промышленности использовались природные полимеры – шерсть, хлопок, джут. Молекулы природных полимеров, как и пластмасс, представляют собой длинные цепочки более простых молекул. Белки – тоже природные полимеры. ДНК, вещество, из которого состоят хромосомы, — природный полимер.

Хромосомы находятся в составе ядер живых клеток. В них записана генетическая информация организма. Резину делают из природного полимера под названием латекс, млечного сока коры каучуконосных растений. После вулканизации — нагревания в присутствии серы — резина становится прочной.

Вулканизация используется при производстве автомобильных шин.

Источник: https://www.polnaja-jenciklopedija.ru/nauka-i-tehnika/plastmassi-i-prirodnie-polimeri.html

Биоразлагаемые полимеры

Натуральные пластмассы, полимеры

Ужесточающиеся год от года экологические требования на уровне международного сообщества рано или поздно поставят вопрос об утилизации использованных полимерных изделий перед всеми странами мира.

То, что сейчас кажется чудачеством экологов, станет обязательной нормой. «Нефтехимия РФ» обратилась к теме биоразлагаемых пластиков, чтобы понять, насколько развиты эти технологии в мире и могут ли они быть реальной альтернативой традиционным полимерам. Полимерная технология поглощения запахов. Синтетические полимеры, обладая уникальными свойствами и относительно низкой ценой, в последние десятилетия безраздельно господствуют практически во всех сферах человеческой жизни. Однако эти соединения имеют два принципиальных недостатка. Во-первых, подавляющее большинство пластиков производится из невозобновляемого углеводородного сырья, запасы которого ограничены. Во-вторых, большинство полимеров не разлагаются в природе, что приводит к загрязнению окружающей среды и проблемам утилизации. 

Борьба с пакетами

Если первое соображение пока не кажется таким уж реальным, то экологические мотивы уже заставляют многие страны и регионы ограничивать использование полимеров. Так, в Тайване с 2003 года полимерные пакеты запрещены к использованию во всех торговых центрах. То же произошло в Лос-Анджелесе в 2007 году.

С пластиковыми пакетами борются в Кении, Руанде и Танзании. В Бангладеш использование пластиковых пакетов запрещено полностью, после того как было обнаружено, что они, засорив дренажные системы, явились основной причиной наводнений в 1988 и1998 годах, которые затопили 2/3 страны. Во многих странах Европы существуют налоги на пластиковые пакеты.

В декабре 2010 года их запретили в Италии. Если меры по охране среды будут ужесточаться, а цены на нефть и газ продолжат расти, то возможна смена парадигмы в области производства и использования полимеров, то есть переход к производству биоразлагаемых пластиков из возобновляемого сырья наступит гораздо быстрее, чем мы этого ожидаем.

Все производимые и изучаемые технологии биоразлагаемых пластиков делятся на четыре группы. Первая – это полимеры, выделенные из биомассы, и природные полимеры: крахмал, целлюлоза, белки. Вторая – полимеры, производимые микроорганизмами в ходе своей жизнедеятельности (полигидроксиалканоаты, бактериальная целлюлоза).

Третья – полимеры, искусственно синтезированные из природных мономеров (например, полилактиды). И последняя группа – традиционные синтетические пластики с введенными в них биоразрушающими добавками. Эти технологии активно развиваются в странах с постиндустриальной экономикой. Прежде всего, в США и Европе.

Свои разработки и внедрения есть в Китае, Японии, Корее. А вот в России поиск технологий получения полимеров из возобновляемого сырья и биодеградируемых пластиков идет неактивно. С одной стороны, это странно, ведь Россия располагает большими ресурсами достаточно дешевых зерновых, которые могли бы служить сырьем для производства биополимеров.

Но с другой стороны, это достаточно закономерно.

Научные разработки в области экотехнологий у нас в принципе не популярны, да и получить на них финансирование научным центрам (в основном, государственным) довольно сложно. С другой стороны, уровень потребления традицион ных пластиков в России крайне низкий.

Насыщение базовых потребностей в традиционных полимерах еще не произошло, поэтому кажется, что заниматься биотехнологиями в нефтехимии еще рано. Да и нефти в России пока достаточно. 

Отходы бактерий

При росте некоторых микроорганизмов на средах, содержащих питательные углеродные вещества и имеющих дефицит азота или фосфора, микробныеклетки начинают синтезировать и накапливать полигидроалканоаты (PHA), которые служат им резервом энергии и углерода.

При изменении окружающей среды в случае голода микроорганизмы могут разлагать PHA и использовать образующиеся продукты для питания. Это свойство бактерий человек использует для промышленного получения полигидроалканоатов. Важнейшими из них являются полигидроксибутират (PHB) и его сополимер с полигидроксивалератом (PHV).

Полигидроксиалканоаты – это полностью биодеградируемые пластики. В компосте при влажности 85% и температуре 20-60 °С разлагается на воду и углекислый газ за 7-10 недель. PHV бактериального происхождения был открыт в 1925 году во Франции у бактерий Ralstonia entrophus и Bacillus megaterium.

Первое промышленное производство сополимеров PHB-PHV организовала в 1980 году английская фирма ICA. Полимер получил название Biopol. Он характеризуется относительной термостабильностью, пропускает кислород, устойчив к агрессивным химикатам и имеет прочность, сопоставимую с полипропиленом.

Biopol выпускается до сих пор несколькими компаниями, но объемы не превышают 10 тыс. тонн в год. Дело в том, что его стоимость составляет $10-15 за кг – это в 8-10 раз выше, чем у традиционных пластиков.

Поэтому основные сферы применения – медицина (биоразлагаемые шовные нити, штифты, пленки, капсулы для доставки лекарств), упаковка некоторых парфюмерных товаров, изделия личной гигиены. В апреле 2010 года в США в городе Клинтон компанией Тelles был запущен завод по производству PHBV мощностью 50 тыс. тонн в год.

Пластик получил название Mirel, его предполагаемая цена – $4,5-5,5 за кг. Отметим, что традиционный полиэтилен низкого давления стоит в России около $2,2-2,5 за кг. Сырьем для предприятия Тelles служит глюкоза, получаемая из осахаренного кукурузного крахмала. Стоимость сырья в себестоимости PHBV составляет при этом 60%. Поэтому основные усилия ученых и технологов направлены на поиск дешевого сырья для производства PHA. Для России перспективным сырьем сегодня является крахмал зерновых (пшеница, рожь, ячмень) и, в перспективе, производные древесного сырья.

Клетка – завод мономеров

Бактерии могут производить не только готовые полимеры, но и сырье – мономеры, из которых уже искусственно можно получать пластики. Самым распространенным биоразлагаемым полимером из этой группы является полимолочная кислота (PLA).

Производство мономера – собственно молочной кислоты – микробиологическим способом дешевле традиционного, так как бактерии синтезируют ее из доступных сахаров в технологически несложном процессе.

Сам полимер молочной кислоты (точнее, смесь двух оптических изомеров одного и того же состава) имеет достаточно высокую термическую стабильность: температуру плавления 210-220 °С, температура стеклования – около 90 °С. Изделия из PLA характеризуются высокой жесткостью, прозрачностью и блеском, напоминая в этом отношении полистирол.

В качестве пластификатора можно использовать сам мономер – молочную кислоту. Патент на способ промышленного получения PLA был выдан компании DuPont еще в 1954 году. Однако коммерциализация этого биопластика началась лишь в XXI веке. В 2002 году в городе Блэр в США фирмой Nature Work был запущен завод мощностью 140 тыс.

тонн по производству PLA из глюкозы кукурузного крахмала. Сегодня это крупнейший производитель PLA в мире, его мощности уже 280 тыс. тонн. В ближайшие 5-10 лет планируется строительство третьего завода, сырьем для которого будут практически бесплатные отходы переработки кукурузы. Продукцию завода в Блэр перерабатывают множество компаний, только в Европе их более 30.

В Старом Свете также функционирует несколько заводов PLA, ряд мелких производителей есть в Азии. Известные мировые инжиниринговые компании также осваивают новую нишу. Лицензии на технологию PLA предлагают, например, Sulzer Chemtech Uhde Inventa-Fischer. PLA самый дешевый из биопластиков, его цена – $2,2-4,5 за кг.

Свойства PLA определяют его широкое применение: он устойчив к действию ультрафиолетового света, плохо воспламеняется и горит с малым выделением дыма. Переработка PLA возможна практически любыми современными методами вплоть до экструзии пленок. Кроме того, PLA – полностью биоразлагаемый полимер.

Изделия из PLA при компостировании полностью разлагаются на воду и углекислый газ за период 20-90 дней.

Главные области применения PLA – упаковка (сумки, тара для пищевых продуктов), бутылки для молока, соков, воды, но не газированных напитков, так как PLA пропускает углекислый газ. Из PLA также изготавливают игрушки, корпусы сотовых телефонов, компьютерные мышки и ткани. Пока развитие этого биопластика сдерживается его ценой. Однако прогнозируется, что новые технологии сделают его конкурентоспособным с полиэтиленом и полипропиленом уже до 2020 года. 

Добавки-разрушители

Одним из вариантов добиться биодеградации традиционных пластиков является использование специальных добавок. Как правило, это соединения переходных металлов, которые на свету и/или в тепле катализируют разложение полимеров. Проблемы тут две.

Добавки должны допускать обработку полимера традиционными способами (литье, формование, выдув, экструзия), при этом полимеры не должны разлагаться, хотя подвергаются температурной обработке. Кроме того, добавка должна ускорять разложение полимера на свету, но допускать длительный период его использования. Тоже на свету.

Иными словами, добавка должна «включать» разложение в определенный момент. Это существенная сложность. Современные добавки допускают типовые способы обработки полимеров, но с условием,что время нахождения сырья в зоне нагрева не должно превышать 7-12 минут.

Малый процент добавки (обычно 1-8%) почти не сказывается при этом на остальных технологических режимах обработки, единственное – нужно равномерно распределять ее по объему полимера.

Очевидно, что использование биоразлагающих добавок целесообразно в тех изделиях, которые часто и массово, используются и выбрасываются.

Это пакеты, сельскохозяйственные и упаковочные пленки, одноразовая посуда, бутылки и т.п. Поэтому наиболее популярные полимеры для использования с добавками – это полиэтилен, полипропилен, ПЭТФ. Основными производителями таких добавок являются американские компании Willow Ridge Plastics, BioTec Environmental, ECM BioFilms.

Но одним из лидеров и пионеров рынка является британская Symphony Environmental со своей добавкой D2W. Как правило, добавки этих фирм работают с полиолефинами, однако, например, добавки серии EcoPure фирмы Bio-Tec Environmental можно использовать более чем с 15 полимерами.

ECM BioFilms выпускает добавки для полистирола, полиуретанов и ПЭТФ. Срок деградации может варьироваться от 9 месяцев до 5 лет. Стоимость добавок за оптовую партию может составлять от $4,2 до $18 за кг в зависимости от производителя. 

Смена парадигмы

Пока биоразлагаемые пластики из природного сырья не могут составить конкуренцию традиционным по самой простой причине – ценовой. Точно так же использование дорогих биоразлагающих добавок приводит к удорожанию изделий и из традиционных полимеров. Однако прогнозы развития рынка биопластиков более чем оптимистичны.

Его объем в 2010 году оценивался в $640 млн, а к 2012 году ожидается рост до $1,3 млрд. В более отдаленной перспективе 2015-2016 годов прогнозируется рост на 43% ежегодно. Ожидается, что самые дешевые из сегодняшних биопластиков смогут конкурировать с традиционными по цене к 2020 году.

Вместе с тем, осознание той реальной цены, которую человечество должно платить за сохранение среды своего обитания, так или иначе приведет к введению серьезных ограничений на использование неразрушающихся изделий массового спроса и переходу к пусть более дорогим, но более экологичным материалам.

Поэтому крупнейшие частные компании и научные центры многих стран занимаются поисками новых, более дешевых технологий получения биопластиков. Вместе с тем, не во всех сферах человеческой жизни известные пластики из природного сырья могут заменить традиционные. Речь идет, скорее всего, о продуктах массового спроса.

В крайнем случае, приемлемым выходом является применение биоразрушающих добавок и использование технологий рецикла полимерных отходов. Поэтому производителям нефтехимической продукции в ближайшие десятилетия не стоит опасаться потери своих рынков.

Источник: https://www.simplexnn.ru/?id=8543

Биоразлагаемый пластик: варианты его производства, применения

Натуральные пластмассы, полимеры

Биоразлагаемый пластик – это материал, который наносит меньший ущерб окружающей среде, когда подвергается переработке и утилизации. Он полностью или частично разлагается микроорганизмами, чьи ферменты разрушают полимерные цепи материала на мелкие части и за меньшее время.

Вред обычного пластика

Пластик – самый популярный материал на планете, который образует значительный объем неперерабатываемого мусора.

При его сжигании образуется большое количество парниковых газов. Существует несколько способов решения этой проблемы:

  • повторное использования;
  • переработка;
  • производство биоразлагаемых пластиков.

Что такое биоразлагаемый пластик

Биоразлагаемые столовые приборы

Биоразлагаемость – это свойство, связанное с химической структурой материала, которое не зависит от происхождения полимера. Процесс биодеградации включает разложение материала воздействием микроорганизмов (например, бактерии, грибы), что приводит к образованию воды, диоксида углерода, метана и не представляет опасности для окружающей среды.

Биоразлагаемый пластик – это материал, изготовленный из продуктов естественного происхождения, обычно растительных, что делает его разлагаемым. Такими продуктами могут быть:

  • кукуруза;
  • картофель;
  • пшеница.

Такие материалы сами по себе могут выполнять процесс биодеградации, становиться природными веществами, реинтегрировать естественный цикл углерода.

Технология производства

Производство биоразлагаемого пластика использует органическое сырье, которое получают из возобновляемых источников или ежедневных отходов, например, бананов, целлюлозы, бобовых, полисахаридов, соевого масла или картофельного крахмала. Эти материалы могут разрушаться микроорганизмами.

Во время разложения образуются углекислый газ, вода и другие биоматериалы, служащие органическим удобрением для почвы, уменьшается время разложения пластика.

Технология производства предполагает привлечение диоксида углерода (CO2) в качестве источника углерода. Углеродные «кирпичи» для создания полимерной цепи берутся непосредственно из одного из газов, которые составляют атмосферу.

В этом процессе также используются:

  • свекольная патока;
  • сахарный тростник;
  • отходы фруктов;
  • отходы картофеля;
  • глицерин.

Синтетические полимеры с катализаторами

Существуют такие виды полимеров:

  • эпоксидные смолы – это одна из самых успешных групп пластика, которая существует более 50 лет. Их физическое состояние может изменятся с жидкости с низкой вязкостью на твердые вещества с высокой температурой плавления;Эпоксидная смола под микроскопом
  • пенопласт (пенополистирол) – один из наиболее широко используемых товарных полимеров;
  • фторполимеры – это семейство высокоэффективных пластиков. Самый известный член этого семейства – политетрафторэтилен, инертен практически ко всем химическим веществам;
  • полиолефины – это семейство полиэтиленовых и полипропиленовых термопластов. Они в основном изготавливаются из нефти и газа в процессе полимеризации этилена и пропилена;
  • полистирол – это синтетический ароматический полимер, который состоит из мономерного стирола, жидкого нефтяного химиката;
  • полиуретан – это прочный, гибкий и долговечный обрабатываемый материал;
  • поливинилхлорид (ПВХ) – один из первых открытых и самых популярных видов пластика;
  • термопласты определяются как полимеры, которые плавятся и формируются практически до бесконечности;
  • термореактивный, или закаленный пластик – это синтетический материал, который подвергается химическому изменению при обработке.

Натуральные полимеры

Разработка биопластичных материалов

Производство биоразлагаемого пластика может использовать такие натуральные полимеры:

Полимолочная кислота (PLA, полилактид) химическая структура

  • крахмал – относится к углеводам, встречается в виде гранул крахмала на многих растениях. Из-за их доступности и цены, полимеры на основе крахмала лидируют в производстве;
  • целлюлоза – также относится к углеводам, составляет основу клеточных стенок растений. Это доступное, наиболее распространенное органическое соединение. Целлюлоза в основном используется в бумажной промышленности;
  • молочная кислота – промежуточный продукт, полученный путем ферментации патоки или ферментации сахара и крахмала. Биополимер, полученный из молочной кислоты, характеризуется прочностью, устойчивостью к ультрафиолетовому излучению;
  • полигидроксиалканоаты – образуются как резерв бактерий в процессе ферментации сахара или жиров. Они деформируемые, эластичные, устойчивые к ультрафиолетовому излучению.

Основные производители

Основные производители биоразлагаемого пластика:

  • Bio-on SpA – итальянская компания, которая работает в международном масштабе. Компания Bio-on лицензирует и производит самые инновационные материалы благодаря деятельности в области прикладных исследований, разработок технологий био-ферментации;
  • Plantic. Основное сырье, которое использует Plantic Technology Ltd – это натуральный крахмал с высоким содержанием амилозы, полученный из кукурузы;
  • Rodenburg предлагает биоразлагаемые полимеры для замены пластика на нефтяной основе. Их продукция производится на основе картофельного крахмала;
  • NatureWorks производят новый пластиковый материал из волокон с уникальными свойствами, которые начинаются с парниковых газов. Компания использует растения для превращения парниковых газов в сахара, которые можно ферментировать;
  • Cereplast производит био-смолы, которые можно использовать в качестве заменителей пластиков на нефтяной основе.

Преимущества и недостатки

Преимущества биоразлагаемого пластика основаны на трех основных областях: экологический интерес, техническая оснащенность, маркетинговые и коммуникационные преимущества.

Экологический интерес

Преимущество использования этого материала перед полиэтиленом – улучшение влияния продукта на окружающую среду. Другие его преимущества:

  • сокращение выбросов парниковых газов;
  • экономия ископаемых ресурсов;
  • возможность использовать локальный ресурс;
  • валоризация побочных продуктов.

Технические преимущества

Биоразлагаемый пластик имеет такие технические преимущества:

  • внутренние свойства: полиэтиленфураноат (ПЭФ) – пример преимуществ, которые достигаются с использованием биопластика. Это новый полимер, который появится на рынке в 2020 году;
  • биологический распад: это свойство позволяет привнести новые функции. Основной пример – мульчирующая пленка для сельского хозяйства: ее функция – регулирование температуры почвы при поддержании относительной влажности, что способствует лучшему росту растительности;
  • новые функции: отпугивание вредителей и насекомых, питание растений.

Маркетинговые и коммуникационные преимущества

Биоразлагаемый пластик:

  • отвечает на потребительский спрос;
  • создает позитивный имидж компании;
  • делает продукт более привлекательным.

Недостатки материала сосредоточены вокруг нескольких ключевых наблюдений:

  • опасность: не существует юридически обязывающего или общепринятого определения биоразлагаемости, которое точно определяет период, условия или степень деградации;
  • термин «компостируемый», как правило, относится только к промышленной компостируемости. Не рекомендуется домашнее компостирование биопластика, поскольку необходимые условия не выполняются;
  • биоразлагаемому пластику нет места в окружающей среде. Мельчайшие остатки пластика – микропластик – почти всегда остаются и накапливаются в окружающей среде.

Сферы применения

Материал может использоваться в таких сферах:

  • в сельском хозяйстве – его можно смешивать в почве со слоями мульчи и семян;
  • в медицине – может быть полезен для изготовления рассасывающихся швов, микроустройств или капсул, которые разлагаются внутри тела.
  • для изготовления биопластичной упаковки – эта упаковка может быть разложена раньше, чем обычная;

Биоразлагаемые, а также компостируемые полимеры почти отсутствуют на рынках транспорта и строительства. Они востребованы в секторах, где это свойство разлагаемости может быть их техническим преимуществом, например:

  • в сельском хозяйстве;
  • в садоводстве;
  • в лесном хозяйстве.

Маркировка биоразлагаемой продукции

Cимволы переработки пластика

Биоразлагаемая продукция может иметь такую маркировку:

  • биоразлагаемые, компостируемые этикетки. Эти прозрачные этикетки наклеиваются на бутылки или банки с пищевыми продуктами и косметикой;
  • белые биоразлагаемые пленочные этикетки, устраняющие прозрачность продукта. Ими обычно маркируют свежие фруктовые соки в бутылках;
  • бумажные этикетки с биоразлагаемым, компостируемым биоадгезивом. Эта клейкая бумага содержит 95% сахарного тростника, льна и конопли.

Методы утилизации

Биоразлагаемые пластики могут подвергаться тем же процессам трансформации и утилизации, которые позволяют создавать широкий спектр предметов, например:

  • жесткие предметы небольшой толщины, из которых изготавливаются лотки, подносы, блистеры перерабатывают с помощью технологии термоформования плит;
  • листы из пеноматериала, которые можно разрезать до нужных форм и размеров;
  • вспененные наполнители для одноразовой упаковки, которые обладают амортизирующими свойствами, способностью адаптироваться к различным формам, полностью аналогичные пенополистиролу;
  • объекты, отформованные с помощью литьевых прессов: расплавленный материал при температуре, позволяющей ему скользить, подается в пресс-форму под высоким давлением.

Процесс и скорость разложения полимеров

Сильные стороны полимеров, такие как стабильность, стойкость, инерция, представляют опасность для экосистемы, загрязненной пластиковыми отходами.

Время разложения пластика в зависимости от факторов окружающей среды может составлять до 450 лет.

При преобразовании более крупных деталей в макроскопические они распадаются, часто под механическим воздействием, на большее число мелких частиц. Различия фрагментации (механической), разложения (химической), выветривания (физической) и биотической деградации полимеров:

  • в случае фрагментации часть размером 1 см³ распадается на 1000 фрагментов размером 1 мм, а затем в 1 миллион частиц размером 100 мкм. Процесс происходит до тех пор, пока исходный пластик не станет невидимым для человеческого глаза;
  • физическое выветривание также описывает распад на более мелкие фрагменты без существенных изменений. В процессе присутствуют такие факторы, как температура, давление, которые разрушают материал;
  • в случае химического разложения полимеры реагируют в зависимости от pH, солености или ультрафиолетового излучения, с другими веществами или, если они полностью разложены, с конечными продуктами, такими как CO², нитраты, вода;
  • биотическую деградацию стимулирует энергетический обмен организмов – источник углерода. Метаболизм приводит к полной деградации органических молекул.

Cleanbin.ru Все права защищены

Источник: https://cleanbin.ru/waste/biodegradable-plastic

Полимеры, волокна, каучуки

Натуральные пластмассы, полимеры

Высокомолекулярные соединения. Реакции полимеризации и поликонденсации. Полимеры. Пластмассы, волокна, каучуки.

Высокомолекулярные вещества, состоящие из больших молекул цепного строения, называются полимерами  (от греч. «поли» — много, «мерос» — часть). 

Например, полиэтилен, получаемый при полимеризации этилена CH2=CH2:   

…-CH2-CH2-CH2-CH2-CH2-CH2-CH2-…или   (-CH2CH2-)n

 Молекула полимера называется макромолекулой (от греч. «макрос» — большой, длинный).   Молекулярная масса макромолекул достигает десятков — сотен тысяч (и даже миллионов) атомных единиц.

Соединения, из которых образуются полимеры, называются мономерами.

Например, пропилен (пропен) СН2=СH–CH3 является мономером полипропилена

Группа атомов, многократно повторяющаяся в цепной макромолекуле, называется ее структурным звеном.  

Мономеры – низкомолекулярные вещества, из которых образуются полимеры.

Степень полимеризации – число, показывающее количество элементарных звеньев в молекуле полимера.

Степень полимеризации обычно обозначается индексом «n» за скобками, включающими в себя структурное (мономерное) звено:  (–CH2–CH2–)n.

Полимеры, макромолекулы которых построены строго определенным способом, называют регулярными.

Полимер называется стереорегулярным, если заместители R в основной цепи макромолекул (–CH2–CHR–)n расположены упорядоченно.

Стереорегулярные полимеры обладают гораздо лучшими свойствами – пластичностью, прочностью и теплостойкостью; они способны кристаллизоваться, в отличие от нерегулярных.

Классификация по структуре

По структуре полимеры делятся на: линейные, разветвленные и пространственные.

ЛинейныеРазветвленныеПространственные
Состоят из последовательности повторяющихся звеньев с большим отношением длины молекулы к ее поперечному размеру.

Целлюлоза, полиэтилен низкого давления, капрон

Макромолекулы разветвленных имеют боковые ответвления от цепи, называемой главной или основной

Крахмал

 

Химические связи имеются и между цепями, образуя пространственную структуру

Резина, фенолформальдегидные смолы

Линейные — макромолекулы состоят из последовательности повторяющихся звеньев с большим отношением длины молекулы к ее поперечному размеру (целлюлоза, полиэтилен низкого давления, капрон).

Разветвленные — макромолекулы которых имеют боковые ответвления от цепи, называемой главной или основной (крахмал).

Сетчатые (пространственные) — химические связи имеются и между цепями (резина, фенолформальдегидные смолы).

Классификация по происхождению

По способу получения полимеры делятся на: природные, синтетические и искусственные.

Природные волокнаСинтетические волокнаИскусственные
Непосредственно существуют в природе
  •  хлопок
  •  шерсть
  •  натуральный шелк
Получают полностью химическим путем в реакциях полимеризации и поликонденсации Получают модификацией натуральных полимеров
  • ацетатное волокно
  • целлулоид
  • вискоза

Природные полимеры непосредственно существуют в природе (крахмал, целлюлоза и др.).

Синтетические полимеры получают полностью химическим путем в реакциях полимеризации и поликонденсации (полиэтилен, полихлорвинил, фенол-формальдегидные смолы, метилметакрилат и т.д.). Не имеют аналогов в природе.

Искусственные – получают модификацией натуральных полимеров (вискоза –модифицированная целлюлоза, резина –модификация натурального каучука).

Классификация по химическому характеру

По химическому характеру и составу полимеры и химические волокна бывают: полиэфирные, полиамидные, элементоорганические (например, кремнийорганические полимеры).

Полиэфирные полимерыПолиамидные полимерыЭлементоорганические
Содержат группу -СОО-

Лавсан (полиэтилентерефталат)

Содержат группу -СО-NH2—

Найлон, капрон

Содержат атомы других хим. элементов (кремний и др.).

Кремнийорганические полимеры

Полиэфирные полимеры — содержат группу сложных эфиров -СОО-.

Полиамидные полимеры — содержат пептидную связь -СО-NH2-.

Элементоорганические полимеры — содержат атомы других химических элементов (помимо С, Н, О, N).

Классификация по способу получения

Полимеры получают либо реакциями полимеризации, либо поликонденсацией.

ПолимеризацияПоликонденсация
Это присоединение одних молекул к другим за счет разрыва кратных связей. Побочные продукты, как правило, не образуются.

Полиэтилен, полипропилен и др.

Образование полимера происходит за счет реакции замещения. При этом образуется низкомолекулярный побочный продукт.

Фенолформальдегидная смола, капрон

Полимеризация — процесс образования высокомолекулярного вещества(полимера) путём многократного присоединения молекул мономера к активным центрам в растущей молекуле полимера.

Например, образование полиэтилена происходит по механизму полимеризации:

Поликонденсация – процесс образования высокомолекулярных соединений, протекающий по механизму замещения и сопровождающийся выделением побочных низкомолекулярных продуктов (обычно это вода).

Например, образование капрона протекает по механизму поликонденсации:

Свойства полимеров

По свойствам полимеры можно разделить на: термореактивные, термопластичные и эластомеры.

ТермореактивныеТермопластичныеЭластомеры
Неплавкие и неэластичные материалы.

Фенолформальдегидныесмолы, полиуретан

Меняют форму при нагревании и сохраняют её.

Полиэтилен, полистирол, поливинилхлорид

Эластичные вещества при разных температурах.

Натуральный каучук, полихлоропрен


Термореактивные полимеры
— пластмассы, переработка которых в изделия сопровождается необратимой химической реакцией, приводящей к образованию неплавкого и нерастворимого материала.

Например, фенолформальдегидные смолы, полиуретан.

Термопластичные полимеры — меняют форму в нагретом состоянии и сохраняют её после охлаждения.

Например, полиэтилен, полистирол, полихлорвинил и т.д.

Эластомеры – обладают высокоэластичными свойствами в широком интервале температур.

Например, натуральный каучук.

Полимеризация

Степень полимеризации — это число, показывающее сколько молекул мономера соединилось в макромолекулу. 

Степень полимеризации обычно обозначается индексом «n» за скобками, включающими в себя структурное (мономерное) звено:  (–CH2CH2–)n

Характерные признаки полимеризации.
  1. В основе полимеризации лежит реакция присоединения.
  2. Полимеризация – цепная реакция, включает стадии инициирования, роста и обрыва цепи.
  3. Элементный состав (молекулярные формулы) мономера и полимера одинаков.

Катализаторами полимеризации могут быть: металлический натрий, пероксиды, кислород, металлоорганические соединения, комплексные соединения.

Процесс образования высокомолекулярных соединений при совместной полимеризации двух или более различных мономеров называют сополимеризацией.

Например, схема сополимеризации этилена с пропиленом:

Важнейшие синтетические полимеры

Изображение с портала orgchem.ru

Важнейшие синтетические полимеры, получаемые реакцией полимеризации, и области их применения:

ПолимерМономерХарактеристики полимераПрименение полимера
Полиэтилен

(–СН2–СН2–)n

Этилен

СН2=СН2

Синтетический, линейный, термопластичный, химически стойкийУпаковка, тара
ПолипропиленПропилен

СН2=СН–СН3

Синтетический, линейный, термопластичный, химически стойкийТрубы, упаковка, ткань (нетканый материал)
ПоливинилхлоридВинилхлорид

СН2=СН–Сl

Синтетический линейный полимер, термопластичныйНатяжные потолки, окна, пленка, трубы, полы, изолента  и т.д
ПолистиролСтиролСинтетический линейный полимер, термопластичныйУпаковка, посуда, потолочные панели
Полиметилметакрилат

Метиловый эфир метакриловой кислоты

Синтетический линейный полимер, термопластичныйОчки, корпуса фар и светильников, душевые кабины, мебель и т.д
Тефлон (политетрафторэтилен)ТетрафторэтиленСинтетический линейный полимер.

Термопластичный (t = 260-3200C)

Обладает очень высокой химической стойкостью

Посуда, пластины утюгов, ленты и скотч, упаковка, изоляция
Искусственный каучук

Мономер: бутадиен-1,3 (дивинил)

Синтетический, линейный,  эластомер, содержит двойные связиРезина, изоляция, различные материалы, ракетное топливо
Натуральный каучук

Мономер: 2-метилбутадиен-1,3

Природный, линейный, эластомер, содержит двойные связиРезина, изоляция, различные материалы, ракетное топливо
Хлоропреновый каучук

Мономер: 2-хлорбутадиен-1,3

Синтетический, линейный, эластомер, содержит двойные связиРезина, изоляция, различные материалы, ракетное топливо
Бутадиен-стирольный каучук

Мономеры: бутадиен-1,3 и стирол

Синтетический, эластомерРезина, изоляция, различные материалы, ракетное топливо
Полиакрилонитрил АкрилонитрилСинтетический, линейныйВолокна, пластмассы

Поликонденсация

Поликонденсация – процесс образования высокомолекулярных соединений, протекающий по механизму замещения и сопровождающийся выделением побочных низкомолекулярных продуктов, обычно это вода.
Характерные признаки поликонденсации.
  1. В основе поликонденсации лежит реакция замещения.
  2. Поликонденсация – процесс ступенчатый, т.к.

    образование макромолекул происходит в результате последовательного взаимодействия мономеров, димеров или n-меров как между собой, так и друг с другом.

  3. Помимо высокомолекулярного соединения, в реакции поликонденсации образуется второе, низкомолекулярное вещество (обычно это вода).

Важнейшие синтетические полимеры, получаемые реакцией поликонденсации, и области их применения:

Полимер и мономерХарактеристики полимераПрименение полимера
Капрон

Мономер: 6-аминокапроновая кислота (лактам)

Синтетический, линейный, термопластичный, очень эластичныйПолиамидные волокна (нитки, ткани, парашюты, втулки и т.д.)
Найлон

Мономер: 1,6-диаминогексан и адипиновая кислота (1,6-гександиовая)

Синтетический, полиамидный, линейный, термопластичныйИзготовление втулок, вкладышей, ниток, одежды, гитарных струн (полиамидное волокно)
Лавсан (полиэтилентерефталат)

Мономер: Этиленгликоль, терефталевая кислота

Синтетический линейный полимер, термопластичный, полиэфирныйНатяжные потолки, окна, пленка, трубы, полы, изолента  и т.д
Фенолформальдегидная смола

Мономеры: фенол и формальдегид

Синтетический, пространственный (сетчатый) полимерПроизводство ДСП, лаков, клея (БФ-6 применяется в медицине), часто используется с наполнителями
Крахмал

Мономер: α-глюкоза

Природный, полиэфирный, разветвленныйПищевая, текстильная, бумажная промышленность, фармацевтика и др.
Целлюлоза

Мономер: β-глюкоза

Природный, полиэфирный, линейныйПроизводство бумаги, искусственных волокон, пленок, пластмасс, лакокрасочных материалов, бездымного пороха, взрывчатки, твердого ракетного топлива, получение гидролизного спирта и др.
ДНК

Мономер: Дезоксирибоза, ортофосфорная кислота, азотистые основания

Природный, полиэфирный, линейныйФункционирование живых организмов
РНК

Мономер:  Рибоза, ортофосфорная кислота, азотистые основания

Природный, полиэфирный, линейныйФункционирование живых организмов

Источник: https://chemege.ru/polimery/

Ваш педагог
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: