Первое начало термодинамики

Содержание
  1. Первый закон термодинамики
  2. Из истории
  3. Частные случаи первого закона термодинамики
  4. Термодинамический цикл
  5. Тепловые двигатели
  6. Вечный двигатель первого рода
  7. Первый закон термодинамики. Как рассказать просто о сложном?
  8. 2. Первый закон термодинамики в процессах
  9. 3. Применение
  10. 4. Методические советы учителям
  11. Первое начало термодинамики
  12. Приведем еще некоторые формулировки первого начала термодинамики:
  13. Проинтегрировав выражение (I.6) от V1 до V2, получим
  14. В уравнении (1.12) сгруппируем переменные с одинаковыми индексами. Получаем:
  15. При адиабатическом процессе работа расширения совершается за счёт уменьшения внутренней энергии газа:
  16. Энергия движения
  17. Энергия положения
  18. Энергия массы
  19. Превращение и сохранение энергии
  20. SA. I закон термодинамики
  21. Изохорный процесс
  22. Изотермический процесс
  23. Изобарный процесс
  24. Адиабатный процесс
  25. Уравнение теплового баланса
  26. *Теплоемкость газов
  27. Литература
  28. Первый закон термодинамики и его применение в физике
  29. Определение первого закона термодинамики
  30. Формула первого закона термодинамики
  31. Процессы первого закона термодинамики
  32. Первый закон термодинамики для изохорного процесса
  33. Первый закон термодинамики для изобарного процесса
  34. Применение первого закона термодинамики
  35. Первый закон термодинамики, видео

Первый закон термодинамики

Первое начало термодинамики
Подробности Категория: Термодинамика 21.12.2014 19:26 13046

Первое начало термодинамики, или первый закон термодинамики, называют законом сохранения энергии для термодинамической системы.

Из истории

Юлиус Роберт фон Майер

Впервые этот закон был сформулирован немецким врачом и естествоиспытателем Юлиусом Робертом фон Майером. В качестве судового врача в 1840 г. он прибыл на остров Ява. Во время лечения больных ему приходилось делать кровопускание.

И вот тут Майер обратил внимание на то, что венозная кровь у жителей тропиков светлее, чем у европейцев. Она была почти такой же ярко-красной, как и артериальная кровь.

Учёный нашёл объяснение этому факту, предположив, что причина кроется в разнице температур между теплом собственного организма человека и теплом окружающей среды. В тропиках высокая температура, и организму требуется вырабатывать меньше теплоты. Следовательно, он сжигает меньше кислорода.

Его в крови остаётся больше, и кровь переходит из артерий в вены, оставаясь практически такого же цвета. А в холодном климате организм нуждается в большем количестве тепла. И чем больше кислорода потребляет организм для этой цели, тем заметнее разница в цвете артериальной и венозной крови.

Теплоту организм получает, сжигая кислород, то есть, совершая работу. Работа превращается в теплоту. Обоснование первого закона термодинамики Майер опубликовал в 1842 г. в своей работе «Замечания о силах неживой природы». Более того, учёный нашёл и соотношение между количеством работы и количеством теплоты, полученной в результате этой работы.

Это же соотношение, независимо от Майера, экспериментально установил английский физик Джеймс Прескотт Джоуль. Результаты оказались такими же, как и у Майера. В разных экспериментах одно и то же количество работы превращалось в одно и то же количество тепла, и наоборот.

В изолированной физической системе энергия никуда не исчезает. Она лишь переходит из одной формы в другую. Так утверждает общий закон сохранения энергии. Он справедлив и для изолированной термодинамической системы. Запас энергии в такой системе также остаётся постоянным. Работа превращается в теплоту, а теплота – в работу.

В результате различных процессов, происходящих в термодинамической системе, начальное и конечное состояния системы отличаются.

Так как внутренняя энергия системы U зависит только от её состояния – давления, объёма и температуры (U = U(P, V, T) ), то изменение энергии U определяется начальным и конечным состоянием системы и не зависит от того, каким образом она перешла из одного состояния в другое.

U = U2 –U1.

Внутреннюю энергию термодинамической системы можно изменить, сообщив ей некоторое количество теплоты или совершив над ней работу. Математически связь между количеством теплоты, полученной термодинамической системой, изменением её внутренней энергии и работой, совершённой за счёт этой теплоты математически выглядит так:

U = Q – A, или Q =U + A,

где U – изменение внутренней энергии системы при сообщении ей теплоты;

Q – количество теплоты, полученное системой при теплопередаче;

A – работа, совершённая системой против внешних сил.

Это и есть математическое выражение первого закона термодинамики.

Теплота, которую получила термодинамическая система, расходуется на изменение её внутренней энергии и работу, совершённую над внешними телами.

При переходе из начального состояния в конечное термодинамическая система может получать теплоту различными способами. В технической термодинамике положительной считают теплоту, получаемую системой, а отрицательной – теплоту, которую система отдаёт. Общее количество теплоты Q – это алгебраическая сумма всех количеств теплоты, получаемых или отдаваемых системой.

В отличие от теплоты работа, совершённая системой, не является её характеристикой. Она зависит от пути перехода системы из начального состояния в конечное. Поэтому работа характеризует сам процесс перехода.

Частные случаи первого закона термодинамики

Первый закон термодинамики удобно рассматривать на примере изопроцессов для газа.

При изохорном процессе работа не совершается, так как объём газа остаётся постоянным (V = const). Поэтому Q =U.

Изотермический процесс в системе происходит при постоянной температуре (T = const). Следовательно, вся теплота, полученная системой, расходуется на совершение работы. Так как U=0, то Q =A.

Изобарный процесс происходит при постоянном давлении (P = const).Теплота, сообщаемая системе, идёт и на изменение внутренней энергии, и на совершение работы.

Q =U + A

Работа, которую газ совершает при расширении или сжатии, равна A = P·∆V.

Отсюда Q =U + P·∆V.

При адиабатическом процессе нет обмена теплотой с внешней средой. Q =0, А = -∆U. Это означает, что работа совершается за счёт уменьшения внутренней энергии системы.

Термодинамический цикл

Если термодинамическая система, независимо от того, какие превращения (нагревания, охлаждения, сжатия, расширения, химические превращения и др.) в ней не происходили бы, в конечном счёте возвращается в своё первоначальное состояние, то термодинамический процесс, в результате которого это происходит, называется термодинамическим циклом.

Пример термодинамического цикла – круговорот воды в природе.

Под воздействием солнечных лучей быстро нагревается вода в лужах, образовавшихся после дождя. Растёт её температура, и вода начинает испаряться, при этом увеличиваясь в объёме. Пар поднимается вверх.

Там он остывает, и его объём снова уменьшается. Конденсируясь, пар превращается в облако. Капли дождя падают на землю и снова образуют лужи. Цикл завершается. После этого процесс повторяется снова.

В результате термодинамического цикла в системе всё остаётся по-прежнему, хотя в процессе цикла совершалась работа и выделялась или поглощалась теплота.

Все параметры системы, несмотря на процессы, происходящие в ней, возвращаются в исходное состояние. В этом случае изменения внутренней энергии не происходит.

Следовательно, работа, совершённая системой по замкнутому циклу, равна количеству теплоты.

A = Q, или QA = 0,

В замкнутом цикле любая произведённая работа преобразуется в теплоту.

На основе замкнутых циклов построена работа тепловых машин.

Тепловые двигатели

Принцип преобразования внутренней энергии системы в механическую лежит в основе тепловых двигателей. Такой двигатель представляет собой тепловую машину, превращающую тепло в механическую энергию.

Основные части таких двигателей – нагреватель, рабочее тело и охладитель. Очень часто рабочим телом в тепловом двигателе служит газ. Получая теплоту от нагревателя, он расширяется и совершает работу.

Чтобы работа такого двигателя не прекращалась, параметры рабочего тела, в нашем случае газа, после совершения работы возвращаются в первоначальное состояние (газ охлаждается в холодильнике).
Далее процесс повторяется сначала. Реальные тепловые машины (двигатели внутреннего сгорания, паровые машины и др.

) работают циклически, повторяя теплопередачу и превращение теплоты в работу. Рабочим телом могут быть пары бензина, водяные пары, воздух, уголь, нефть и др.

Вещество с более высокой температурой находится в резервуаре, который называется нагревателем, а с более низкой – в резервуаре, называемом холодильником.

Для любой тепловой машины очень важна такая величина, как коэффициент полезного действия (КПД). Это отношение количества работы, совершённой двигателем, к количеству теплоты, полученной от нагревателя.

А = QHQХ,

где QH– количество теплоты, отданное нагревателем рабочему телу;

QХ – количество теплоты, которое рабочее тело отдаёт охладителю.

Так как часть теплоты теряется при передаче, то КПД двигателя всегда меньше единицы.

Наибольший КПД возможен в двигателе Карно.

Вечный двигатель первого рода

Создание двигателя, который мог бы совершать рабóту, превышающую затраченную на её производство энергию, с древних времён было мечтой многих изобретателей.

Вечным двигателем первого рода называют устройство, которое может бесконечно совершать работу, не затрачивая на это энергии. Но согласно первому закону термодинамики термодинамическая система может совершать работу за счёт теплоты, получаемой извне и убыли своей внутренней энергии.

A = QU

Если к системе не подводить теплоту, то работу можно совершить только за счёт внутренней энергии. Но в таком случае через некоторое время запас этой энергии иссякнет. Это означает, что нельзя создать такую машину, которая смогла бы работать без подведения энергии извне. Таким образом, вечный двигатель невозможен. Эта также одна из формулировок первого закона термодинамики.

Источник: http://ency.info/materiya-i-dvigenie/termoinamika/372-pervyj-zakon-termodinamiki

Первый закон термодинамики. Как рассказать просто о сложном?

Первое начало термодинамики

Статьи

Линия УМК А. В. Грачева. Физика (7-9)

Линия УМК А. В. Грачева. Физика (10-11) (баз., углубл.)

Линия УМК Г. Я. Мякишева, М.А. Петровой. Физика (10-11) (Б)

Линия УМК А. Е. Гуревича. Физика (7-9)

Физика

Термодинамика — раздел физики, в котором изучаются процессы изменения и превращения внутренней энергии тел, а также способы использования внутренней энергии тел в двигателях.

05 июля 2019

Термодинамика — раздел физики, в котором изучаются процессы изменения и превращения внутренней энергии тел, а также способы использования внутренней энергии тел в двигателях.

Собственно, именно с анализа принципов первых тепловых машин, паровых двигателей и их эффективности и зародилась термодинамика.

Можно сказать, что этот раздел физики начинается с небольшой, но очень важно работы молодого французского физика Николя Сади Карно.

Самым важным законом, лежащим в основе термодинамики является первый закон или первое начало термодинамики. Чтобы понять суть этого закона, для начала, вспомним что называется внутренней энергией.

ВНУТРЕННЯЯ ЭНЕРГИЯ тела — это энергия движения и взаимодействия частиц, из которых оно состоит. Нам хорошо известно, что внутреннюю энергию тела можно изменить, изменив температуру тела.

А изменять температуру тела можно двумя способами:

  1. совершая работу (либо само тело совершает работу, либо над телом совершают работу внешние силы);
  2. осуществляя теплообмен — передачу внутренней энергии от одного тела к другому без совершения работы.

Нам, также известно, что работа, совершаемая газом, обозначается Аг, а количество переданной или полученной внутренней энергии при теплообмене называется количеством теплоты и обозначается Q. Внутреннюю энергию газа или любого тела принято обозначать буквой U, а её изменение, как и изменение любой физической величины, обозначается с дополнительным знаком Δ, то есть ΔU.

Сформулируем ПЕРВЫЙ ЗАКОН ТЕРМОДИНАМИКИ для газа. Но, прежде всего, отметим, что когда газ получает некоторое количество теплоты от какого-либо тела, то его внутренняя энергия увеличивается, а когда газ совершает некоторую работу, то его внутренняя энергия уменьшается. Именно поэтому первый закон термодинамики имеет вид:

ΔU = Q — Aг

Так как работа газа и работа внешних сил над газом равны по модулю и противоположны по знаку, то первый закон термодинамики можно записать в виде:

ΔU = Q + Aвнеш.

Понять суть этого закона довольно просто, ведь изменить внутреннюю энергию газа можно двумя способами: либо заставить его совершить работу или совершить над ним работу, либо передать ему некоторое количество теплоты или отвести от него некоторое количество теплоты.

2. Первый закон термодинамики в процессах

Применительно к изопроцессам первый закон термодинамики может быть записан несколько иначе, учитывая особенности этих процессов. Рассмотрим три основных изопроцесса и покажем, как будет выглядеть формула первого закона термодинамики в каждом из них.

  1. Изотермический процесс — это процесс, происходящий при постоянной температуре. С учётом того, что количество газа также неизменно, становится ясно, что так как внутренняя энергия зависит от температуры и количества газа, то в этом процессе она не изменяется, то есть U = const, а значит ΔU = 0, тогда первый закон термодинамики будет иметь вид: Q = Aг.
  2. Изохорный процесс — это процесс, происходящий при постоянном объёме. То есть в этом процессе газ не расширяется и не сжимается, а значит не совершается работа ни газом, ни над газом, тогда Аг = 0 и первый закон термодинамики приобретает вид: ΔU = Q.
  3. Изобарный процесс — это процесс, при котором давление газа неизменно, но и температура, и объём изменяются, поэтому первый закон термодинамики имеет самый общий вид: ΔU = Q — Аг.
  4. Адиабатный процесс — это процесс, при котором теплообмен газа с окружающей средой отсутствует (либо газ находится в теплоизолированном сосуде, либо процесс его расширения или сжатия происходит очень быстро). То есть в таком процессе газ не получает и не отдаёт количества теплоты и Q = 0. Тогда первый закон термодинамики будет иметь вид: ΔU = —Аг.

3. Применение

Первое начало термодинамики (первый закон) имеет огромное значение в этой науке. Вообще понятие внутренней энергии вывело теоретическую физику 19 века на принципиально новый уровень.

Появились такие понятия как термодинамическая система, термодинамическое равновесие, энтропия, энтальпия.

Кроме того, появилась возможность количественного определения внутренней энергии и её изменения, что в итоге привело учёных к пониманию самой природы теплоты, как формы энергии.

Ну, а если говорить о применении первого закона термодинамики в каких-либо задачах, то для этого необходимо знать два важных факта.

Во-первых, внутренняя энергия идеального одноатомного газа равна:  а во-вторых, работа газа численно равна площади фигуры под графиком данного процесса, изображённого в координатах p—V.

Учитывая это, можно вычислять изменение внутренней энергии, полученное или отданное газом количество теплоты и работу, совершённую газом или над газом в любом процессе. Можно также определять коэффициент полезного действия двигателя, зная какие процессы в нём происходят.

4. Методические советы учителям

  1. Обязательно обратить внимание учащихся на знаки работы газа, количества теплоты и изменения внутренней энергии и научить их по графику процесса в координатах р—V определять эти знаки, для чего удобно использовать подобную таблицу:

  2. Лучше всего, рассмотреть не только сам вид первого закона термодинамики в различных процессах, но и способы расчёта всех входящих в него величин.
  3. Обязательно на конкретных примерах, как числовых, так и графических, показать применение первого закона термодинамики.
  4. Уделить особое внимание процессу, в котором давление линейно зависит от объёма — с графиками и примерами применения к этому процессу первого закона термодинамики.
  5. Показать примеры на расчёт коэффициента полезного действия по графику циклического процесса с применением первого закона термодинамики и формул работы газа и изменения его внутренней энергии.

#ADVERTISING_INSERT#

Источник: https://rosuchebnik.ru/material/pervyy-zakon-termodinamiki/

Первое начало термодинамики

Первое начало термодинамики

Первое начало термодинамики представляет собой закон сохранения энергии, один из всеобщих законов природы (наряду с законами сохранения импульса, заряда и симметрии):

Энергия неуничтожаема и несотворяема; она может только переходить из одной формы в другую в эквивалентных соотношениях.

Первое начало термодинамики представляет собой постулат – оно не может быть доказано логическим путем или выведено из каких-либо более общих положений. Истинность этого постулата подтверждается тем, что ни одно из его следствий не находится в противоречии с опытом.

Приведем еще некоторые формулировки первого начала термодинамики:

– Полная энергия изолированной системы постоянна;

– Невозможен вечный двигатель первого рода (двигатель, совершающий работу без затраты энергии).

Первое начало термодинамики устанавливает соотношение между теплотой Q, работой А и изменением внутренней энергии системы ?U:

Изменение внутренней энергии системы равно количеству сообщенной системе теплоты минус количество работы, совершенной системой против внешних сил.

?U = Q-A (1.1)

dU = δQ-δA (1.2)

Уравнение (1.1) является математической записью 1-го начала термодинамики для конечного, уравнение (1.2) – для бесконечно малого изменения состояния системы.

Внутренняя энергия является функцией состояния; это означает, что изменение внутренней энергии ?U не зависит от пути перехода системы из состояния 1 в состояние 2 и равно разности величин внутренней энергии U2 и U1 в этих состояниях:

?U = U2-U1 (1.3)

Следует отметить, что определить абсолютное значение внутренней энергии системы невозможно; термодинамику интересует лишь изменение внутренней энергии в ходе какого-либо процесса.

Рассмотрим приложение первого начала термодинамики для определения работы, совершаемой системой при различных термодинамических процессах (мы будем рассматривать простейший случай – работу расширения идеального газа).

Изохорный процесс (V = const; ?V = 0).

Поскольку работа расширения равна произведению давления и изменения объема, для изохорного процесса получаем:

?U = Q-A1.1
A=P?V=0I.4
?U = QVI.5
Т.е., приращение внутренней энергии равно количеству теплоты, поглощенной при постоянном объеме.

Изотермический процесс (Т = const).

Проинтегрировав выражение (I.6) от V1 до V2, получим

A=RT= RTln= RTln(1.8)

Изобарный процесс (Р = const).

?U = Q-A

A= P?V

Qp = ?U + P?V (1.12)

В уравнении (1.12) сгруппируем переменные с одинаковыми индексами. Получаем:

Qp = U2-U1 +P(V2-V1) = (U2 + PV2)-(U1 +PV1) (1.13)

Введем новую функцию состояния системы – энтальпию Н, тождественно равную сумме внутренней энергии и произведения давления на объем: Н = U + PV. Тогда выражение (1.13) преобразуется к следующему виду:

Qp= H2-H1=?H(1.14)

Т.о., тепловой эффект изобарного процесса равен изменению энтальпии системы.

Адиабатический процесс (Q= 0, δQ= 0).

При адиабатическом процессе работа расширения совершается за счёт уменьшения внутренней энергии газа:

A = -dU=CvdT (1.15)

В случае если Сv не зависит от температуры (что справедливо для многих реальных газов), работа, произведённая газом при его адиабатическом расширении, прямо пропорциональна разности температур:

A = -CV?T (1.16)

Задача №1. Найти изменение внутренней энергии при испарении 20 г этанола при температуре его кипения. Удельная теплота парообразования этилового спирта при этой температуре составляет 858,95 Дж/г, удельный объем пара – 607 см3/г (объемом жидкости пренебречь).

Решение:

1. Вычислим теплоту испарения 20 г этанола: Q=qуд·m=858,95Дж/г·20г = 17179Дж.

2. Вычислим работу по изменению объема 20 г спирта при переходе его из жидкого состояния в парообразное: A= P?V,

где Р – давление паров спирта, равно атмосферному, 101325 Па (т.к. всякая жидкость кипит, когда давление ее паров равно атмосферному).

?V=V2-V1=Vж-Vп, т.к. Vж0, то следовательно при испарении этанола происходит увеличение внутренней энергии спирта.

Источник: https://studopedia.ru/1_95331_pervoe-nachalo-termodinamiki.html

Энергия движения

Движущееся тело способно оказывать силовое воздействие на другие тела на отрезке своего пути, и вы такие явления, бесспорно, наблюдали. Представьте себе стрелу, летящую к мишени. Врезаясь в мишень, стрела оказывает силовое воздействие на ее волокна и раздвигает их.

Следовательно, движущееся тело способно совершить работу, и значит, по определению, оно обладает энергией. Энергия движения такого рода называется кинетической энергией (от греческого kinezis — «движение»).

Согласно механической теории теплоты, теплота — это проявление движения молекул вещества, и значит, ее можно считать особым видом кинетической энергии.

Энергия положения

Если вы поднимете эту книгу вверх, она сможет затем совершать работу уже в силу своего нового положения в гравитационном поле Земли. Чтобы убедиться в этом, отпустите книгу — и она упадет. Падая, книга разгонится до определенной скорости и, следовательно, приобретет некоторую кинетическую энергию.

Упав на пол или на стол, она окажет силовое воздействие на поверхность и едва заметно деформирует ее, одновременно слегка деформировавшись и сама. То есть, находясь на изначальной высоте, книга уже обладала определенным запасом энергии — мы называем ее потенциальной энергией.

Будучи поднятой на определенную высоту, книга не совершает никакой работы, однако имеет возможность ее совершить — если книгу уронят. Если быть точным, энергию книги надо назвать потенциальной энергией гравитационного поля, поскольку книга обладает этой энергией благодаря тому, что она находится в гравитационном поле.

Именно поле реально производит работу при падении книги. Если вы поднимете книгу в космическом корабле, находящемся в межзвездном пространстве, где нет гравитационного поля, она вообще не упадет, поскольку не будет обладать потенциальной энергией гравитационного поля*.

И резинка рогатки, и тетива лука, будучи натянутыми, приобретают потенциальную энергию силы упругости, которая может совершать работу, если их отпустить.

Точно так же электрически заряженная частица, помещенная в электрическое поле, обладает электрической потенциальной энергией. Мы видим это в атоме (см.

Атомная теория строения вещества): энергия электрона зависит от удаленности его орбиты от положительно заряженного ядра. Электрическая потенциальная энергия особого рода участвует в химических взаимодействиях между атомами.

Электроны в каждом атоме обладают определенной электрической потенциальной энергией, зависящей от их места в атоме. После объединения атомов в молекулы эти же электроны будут обладать уже другой энергией, обусловленной их новым положением.

Обычно суммарная энергия до и после химического взаимодействия не одинакова. Энергию, обеспечивающую возможность такого изменения электронной конфигурации атомов, мы называем химической потенциальной энергией.

Имеется множество видов потенциальной энергии, связанных с магнитными и электрическими полями, с различными свойствами веществ и т. д. Потенциальная энергия присутствует в любой системе, где может быть совершена работа, которая до сих пор не совершена.

Энергия массы

В рамках теории относительности Эйнштейн открыл совершенно неожиданную для всех форму энергии. Оказывается, масса может преобразовываться в энергию, и это получило отражение в формуле E = mc2, где с — скорость света в вакууме (3 x 108 м/с).

Из этой формулы следует, что мизерная масса может быть преобразована в колоссальную энергию — и это действительно происходит при ядерном распаде урана в атомных реакторах.

Из этой же формулы следует, что для искусственного получения даже самых малых масс материи требуются колоссальные затраты энергии.

И действительно, на современных ускорителях элементарных частиц протоны разгоняются почти до скорости света, и лишь тогда в результате обстрела ими мишени часть кинетической энергии протонов преобразуется в новые элементарные частицы.

Превращение и сохранение энергии

Различные виды энергии взаимозаменяемы — энергия может переходить из одного вида в другой.

Например, когда лучник выпускает стрелу, потенциальная энергия упругого натяжения тетивы преобразуется в кинетическую энергию летящей стрелы, а при попадании стрелы в мишень — в тепловую энергию рассеяния.

Все виды энергии, за исключением тепловой, могут полностью преобразовываться друг в друга (тепловая энергия, согласно второму началу термодинамики, может преобразовываться в работу лишь частично).

Преобразование одного вида энергии в другой носит отнюдь не случайный характер, поскольку в замкнутых системах выполняется закон сохранения энергии. Это значит, что в замкнутой изолированной системе совокупное количество энергии со временем не меняется, хотя энергия может принимать различную форму.

Предположим, вы располагаете фиксированной суммой денежных средств, распределенных по различным банковским счетам и депозитам: часть ваших денег хранится на текущем сберегательном счете, часть вложена в акции и облигации и т. д.

С вашими деньгами вы можете поступить по-разному: можно их все перечислить на единственный счет, можно распределить их по всем счетам равномерно или же положить на разные счета разное количество денег. Однако, что бы вы ни делали, ваш совокупный капитал останется неизменным. (Для простоты мы не учитываем начисление процентов по вкладам и ценным бумагам.

) Точно так же, принимая различные формы и перераспределяясь, энергия ниоткуда не поступает и никуда не исчезает. В этом и заключается закон сохранения энергии, который гласит: полная энергия замкнутой системы остается постоянной.

* На первый взгляд, это противоречит нашим интуитивным представлениям. Объяснение же таково. В открытом космосе, где нет значительных гравитационных полей, потенциальная энергия, очевидно, должна быть равна нулю.

Поскольку при падении тела в направлении звезды или планеты потенциальная энергия теряется, ее значение должно стать отрицательным.

Потенциальная энергия книги массой 1 кг в гравитационном поле у поверхности Земли составит около –6 x 107 Джоулей, а если книгу поднять на высоту 1000 км, ее потенциальная энергия возрастет до –5 x 107 Джоулей. (Примечание автора)

См. также:

Источник: https://elementy.ru/trefil/21218/Pervoe_nachalo_termodinamiki

SA. I закон термодинамики

Первое начало термодинамики

Как отмечалось в предыдущих темах, внутренняя энергия U термодинамической системы может быть изменена двумя способами: при совершении механической работы и при помощи теплообмена. Если оба способа задействованы одновременно, то можно записать

\(~\Delta U = Q – A \) или \(~Q = \Delta U + A .\)

Эта формула выражает первое начало термодинамики.

  • Количество теплоты, сообщенное термодинамической системе, расходуется на изменение ее внутренней энергии и на совершение работы системой против внешних сил.

Если вместо работы A системы над внешними телами ввести работу внешних сил A ' (А = –A '), то первое начало термодинамики можно переписать так:

\(~\Delta U = Q + A' .\)

  • Изменение внутренней энергии термодинамической системы равно сумме работы, произведенной над системой внешними силами, и количеству теплоты, переданному системе в процессе теплообмена.

Первое начало термодинамики является обобщением закона сохранения энергии для механических и тепловых процессов.

Например, рассмотрим процесс торможения бруска на горизонтальной поверхности под действием силы трения. Скорость бруска уменьшается, механическая энергия «исчезает».

Но при этом трущиеся поверхности (брусок и горизонтальная поверхность) нагреваются, т.е. механическая энергия превращается во внутреннюю.

Изохорный процесс

Объем не изменяется: V = const. Следовательно, ΔV = 0 и А = –A ' = 0, т.е. никакой механической работа не совершается. Первое начало термодинамики будет иметь вид:

\(~Q = \Delta U.\)

  • При изохорном процессе вся энергия, сообщаемая газу путем теплообмена, расходуется целиком на увеличение его внутренней энергии.

Изотермический процесс

Температура газа не изменяется: Τ = const. Следовательно, ΔT = 0 и ΔU = 0. Первое начало термодинамики будет имеет вид:

\(~Q = A.\)

  • При изотермическом процессе вся энергия, сообщаемая газу путем теплообмена, идет на совершение газом работы.

Изобарный процесс

Давление не изменяется: p = const. При расширении газ совершает работу Α = p⋅ΔV и нагревается, т.е. изменяется его внутренняя энергия.

Первое начало термодинамики будет имеет вид:

\(~Q = A + \Delta U .\)

  • При изобарном процессе количество теплоты, сообщенное термодинамической системе, расходуется на изменение ее внутренней энергии и на совершение работы системой против внешних сил.

Адиабатный процесс

Адиабатный процесс — это процесс, происходящий без теплообмена системы с окружающей средой, т.е. Q = 0.

Такие процессы происходят при хорошей теплоизоляции системы либо при быстрых процессах, когда теплообмен практически не успевает произойти.Первое начало термодинамики будет имеет вид:

\(~\Delta U + A = 0\) или \(A = -\Delta U .\)

Если А > 0 (ΔV > 0 газ расширяется), то ΔU< 0 (газ охлаждается), т.е.

  • при адиабатном расширении газ совершает работу и сам охлаждается.

Охлаждение воздуха при адиабатном расширении вызывает, например, образование облаков.

Если А< 0 (ΔV< 0 газ сжимается), то ΔU > 0 (газ нагревается), т.е.

  • при адиабатном сжатии над газом совершается работа и газ нагревается.

Это используется, например, в дизельных двигателях, где при резком сжатии воздуха температура повышается настолько, что воспламеняются пары топлива в двигателе.

Адиабатное изменение состояния газа можно выразить графически. График этого процесса называют адиабатой. При одних и тех же начальных условиях (p0, V0) при адиабатном расширении давление газа уменьшается быстрее, чем при изотермическом (рис.

1), так как падение давления вызвано не только увеличением объема (как при изотермическом расширении), но и понижением температуры. Поэтому адиабата идет ниже изотермы и газ при адиабатном расширении совершает меньшую работу, чем при изотермическом расширении.

Рис. 1

Из первого начала термодинамики вытекает невозможность создания вечного двигателя первого рода, т.е. такого двигателя, который совершал бы работу без затраты энергии извне.

Действительно, если к системе не подводится энергия (Q = 0), то A = –ΔU и работа может быть совершена только за счет убыли внутренней энергии системы. После того как запас энергии окажется исчерпанным, двигатель перестанет работать.

Уравнение теплового баланса

Если система замкнута (работа внешних сил A ' = 0) и теплоизолирована (Q = 0), то первое начало термодинамики будет иметь вид:

\(~\Delta U = 0 .\)

Если в такой системе имеются тела с различной температурой, то между ними будет происходить теплообмен: тела, у которых температура выше, будут отдавать энергию и охлаждаться, а тела с меньшей температурой будут получать энергию и нагреваться. Это будет происходить до тех пор, пока температуры у всех тел не станут одинаковыми, т.е. наступит состояние термодинамического равновесия. При этом

\(~Q_1 + Q_2 + \ldots + Q_n = 0 .\)

Первый закон термодинамики для замкнутой и адиабатически изолированной системы называют уравнением теплового баланса:

  • в замкнутой системе тел алгебраическая сумма количеств теплоты, отданных и полученных всеми телами, участвующими в теплообмене, равна нулю.

При этом применяют следующее правило знаков:

  • количество теплоты, полученное телом, считают положительным, отданное — отрицательным.

*Теплоемкость газов

Как отмечалось ранее, удельная теплоемкость вещества

\(~c = \dfrac{Q}{m \cdot \Delta T}.\)

Рассмотрим, как изменяется эта величина в различных тепловых процессах.

При изотермическом расширении газа ему передается некоторое количество теплоты Q > 0, а ΔΤ = 0. Следовательно, удельная теплоемкость газа при изотермическом процессе

\(~c_T = \dfrac{Q}{m \cdot \Delta T} \to \infty .\)

При адиабатном сжатии (расширении) газ не получает теплоты и не передает ее окружающим телам (Q = 0), а температура газа изменяется (ΔΤ ≠ 0). Следовательно, удельная теплоемкость газа при адиабатном процессе

\(~c_Q = \dfrac{Q}{m \cdot \Delta T} = 0 .\)

При изобарном процессе количество теплоты (из первого начала термодинамики) равно

\(~Q = \Delta U + A.\)

Тогда теплоемкость газа при постоянном давлении

\(~c_p = \dfrac{\Delta U + A}{\Delta T}.\)

При изохорном процессе

\(~Q = \Delta U\)

и теплоемкость газа при постоянном объеме равна

\(~c_V = \dfrac{\Delta U}{\Delta T}.\)

  • Из-за малости величины коэффициента объемного расширения твердых и жидких тел работой, совершаемой ими при нагревании при постоянном давлении, можно пренебречь и считать, что теплоемкости при постоянном объеме и постоянном давлении практически совпадают. Поэтому теплоемкость твердых и жидких тел при заданной температуре может считаться вполне определенной величиной.

Более подробно про теплоемкости газов можно почитать здесь.

Литература

  1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 129-133, 152-161.
  2. Жилко В.В. Физика: Учеб. пособие для 11-го кл. общеобразоват. шк. с рус. яз. обучения / В.В. Жилко, А.В.Лавриненко, Л.Г. Маркович. — Мн.: Нар. асвета, 2002. — С. 125, 128-132.

Источник: http://www.physbook.ru/index.php/SA._I_%D0%B7%D0%B0%D0%BA%D0%BE%D0%BD_%D1%82%D0%B5%D1%80%D0%BC%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B8

Первый закон термодинамики и его применение в физике

Первое начало термодинамики

  • Определение первого закона термодинамики
  • Формула первого закона термодинамики
  • Процессы первого закона термодинамики
  • Первый закон термодинамики для изохорного процесса
  • Первый закон термодинамики для изобарного процесса
  • Применение первого закона термодинамики
  • Первый закон термодинамики, видео
  • Определение первого закона термодинамики

    Простая формулировка первого закона термодинамики может звучать примерно так: изменение внутренней энергии той или иной системы возможно исключительно при внешнем воздействии. То есть другими словами, чтобы в системе произошли какие-то изменения необходимо приложить определенные усилия извне.

    В народной мудрости своеобразным выражением первого закона термодинамики могут служить пословицы – «под лежачий камень вода не течет», «без труда не вытащишь рыбку из пруда» и прочая.

    То есть на примере пословицы про рыбку и труд, можно представить, что рыбка и есть наша условно закрытая система, в ней не произойдет никаких изменений (рыбка сама себя не вытащит из пруда) без нашего внешнего воздействия и участия (труда).

    Интересный факт: именно первый закон термодинамики устанавливает, почему потерпели неудачу все многочисленные попытки ученых, исследователей, изобретателей изобрести «вечный двигатель», ведь его существование является абсолютно невозможным согласно этому самому закону, почему, смотрите абзац выше.

    В начале нашей статьи было максимального простое определение первого закона термодинамики, в действительности в академической науке существует целых четыре формулировки сути данного закона:

    • Энергия ни откуда не появляется и ни куда не пропадает, она лишь переходит из одного вида в другой (закон сохранения энергии).
    • Количество теплоты, полученной системой, идет на совершение ее работы против внешних сил и изменение внутренней энергии.
    • Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданной системе, и не зависит от способа, которым осуществляется этот переход.
    • Изменение внутренней энергии неизолированной термодинамической системы равно разности между количеством теплоты, переданной системе, и работой, совершенной системой над внешними силами.

    Формула первого закона термодинамики

    Формулу первого закона термодинамики можно записать таким образом:

    Q = ΔU + A

    Количество теплоты Q, передаваемое системе равно суме изменения ее внутренней энергии ΔU и работы A.

    Процессы первого закона термодинамики

    Также первый закон термодинамики имеет свои нюансы в зависимости от проходящих термодинамических процессов, которые могут быть изохронными и изобарными, и ниже мы детально опишем о каждом из них.

    Первый закон термодинамики для изохорного процесса

    Изохорным процессом в термодинамике называют процесс, происходящий при постоянном объеме. То есть, если будь-то в газе или жидкости нагреть вещество в сосуде, произойдет изохорный процесс, так как объем вещества останется неизменным. Это условие имеет влияние и на первый закон термодинамики, проходящий при изохорном процессе.

    В изохорном процессе объем V является константой, следовательно, газ работы не совершает A = 0

    Из этого выходит следующая формула:

    Q = ΔU = U (T2) – U (T1).

    Здесь U (T1) и U (T2) – внутренние энергии газа в начальном и конечном состояниях. Внутренняя энергия идеального газа зависит только от температуры (закон Джоуля). При изохорном нагревании тепло поглощается газом (Q > 0), и его внутренняя энергия увеличивается. При охлаждении тепло отдается внешним телам (Q < 0).

    Первый закон термодинамики для изобарного процесса

    Аналогично изобарным процессом называется термодинамический процесс, происходящий в системе при постоянном давлении и массе газа. Следовательно, в изобарном процессе (p = const) работа, совершаемая газом, выражается следующим уравнением первого закона термодинамики:

    A = p (V2 – V1) = p ΔV.

    Изобарный первый закон термодинамики дает:

    Q = U (T2) – U (T1) + p (V2 – V1) = ΔU + p ΔV. При изобарном расширении Q > 0 – тепло поглощается газом, и газ совершает положительную работу. При изобарном сжатии Q < 0 – тепло отдается внешним телам. В этом случае A < 0. Температура газа при изобарном сжатии уменьшается, T2 < T1; внутренняя энергия убывает, ΔU < 0.

    Применение первого закона термодинамики

    Первый закон термодинамике имеет практическое применение к различным процессам в физике, например, позволяет вычислить идеальные параметры газа при разнообразных тепловых и механических процессах.

    Помимо сугубо практичного применение можно этому закону найти применение и философское ведь что ни говорите, но первый закон термодинамики является выражением одного из самых общих законов природы – закона сохранения энергии.

    Еще Еклезиаст писал, что ничто ни откуда не появляется и никуда не уходит, все пребывает вечно, постоянно трансформируясь, в этом и кроется вся суть первого закона термодинамики.

    Первый закон термодинамики, видео

    И в завершение нашей статьи вашему вниманию образовательное видео о первом законе термодинамике и внутренней энергии.

    При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.

    Эта статья доступна на английском – First Law of Thermodynamics.

    Источник: https://www.poznavayka.org/fizika/pervyiy-zakon-termodinamiki-i-ego-primenenie-v-fizike/

    Ваш педагог
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: