Презентация по физике p-n переход и его свойства. Полупроводниковый диод.

Содержание
  1. Полупроводниковый диод: применение, принцип работы, типы
  2. Устройство
  3. Маркировка
  4. Принцип работы
  5. ВАХ-характеристики
  6. P-n-переход. Полупроводниковые диоды и применение их в технике
  7. Введение
  8. Электронно-дырочный переход
  9. Динамическое равновесие процессов диффузии и дрейфа в электронно-дырочном переходе
  10. Энергетическая диаграмма электронно-дырочного перехода
  11. Устройство диода
  12. Статические вольтамперные характеристики диода
  13. Пробой диода
  14. Электрический пробой
  15. Тепловой пробой
  16. Презентация
  17. Уравнение Максвелла и его свойства
  18. Магнитное поле и его свойства
  19. Водяной пар и его свойства
  20. Трансформатор и его применение
  21. Свет и его законы
  22. Радио и его изобретатель
  23. Движение и его характеристики
  24. Волновые и квантовые свойства света
  25. Виды излучений и их свойства
  26. Биография Архимеда и его открытия
  27. Закон Кулона и его применение
  28. Электронные свойства поверхности
  29. Закон отражения и его применение
  30. Основные свойства воздуха
  31. Магнитное поле, его свойства
  32. Общие свойства металлов
  33. Советы как сделать хороший доклад презентации или проекта
  34. Полупроводники p и n типа, p-n переход
  35. Полупроводники p типа
  36. p-n переход
  37. Электрический ток, через p-n переход
  38. P-N-переход и диод
  39. P-N-переход
  40. Полупроводниковый диод
  41. Обозначение и определение основных электрических параметров диодов
  42. Выпрямительные диоды
  43. Диоды с барьером Шотки

Полупроводниковый диод: применение, принцип работы, типы

Презентация по физике p-n переход и его свойства. Полупроводниковый диод.

Для контроля направления электрического тока необходимо применять разные радио и электро детали. В частности, современная электроника использует с такой целью полупроводниковый диод, его применение обеспечивает ровный ток.

Устройство

Полупроводниковый электрический диод или диодный вентиль – это устройство, которое выполнено из полупроводниковых материалов (как правило, из кремния) и работает только с односторонним потоком заряженных частиц. Основным компонентом является кристаллическая часть, с p-n переходом, которая подключена к двум электрическими контактами. Трубки вакуумного диода имеют два электрода: пластину (анод) и нагретый катод.

Фото — полупроводниковый диод

Для создания полупроводниковых диодов используются германий и селен, как и более 100 лет назад. Их структура позволяет использовать детали для улучшения электронных схем, преобразования переменного и постоянного тока в однонаправленный пульсирующий и для совершенствования разных устройств. На схеме он выглядит так:

Фото — обозначение диода

Существуют разные виды полупроводниковых диодов, их классификация зависит от материала, принципа работы и области использования: стабилитроны, импульсные, сплавные, точечные, варикапы, лазер и прочие типы. Довольно часто используются аналоги мостов – это плоскостной и поликристаллический выпрямители. Их сообщение также производится при помощи двух контактов.

Основные преимущества полупроводникового диода:

  1. Полная взаимозаменяемость;
  2. Отличные пропускные параметры;
  3. Доступность. Их можно купить в любом магазине электро-товаров или снять бесплатно со старых схем. Цена начинается от 50 рублей. В наших магазинах представлены как отечественные марки (КД102, КД103, и т. д.), так и зарубежные.

Маркировка

Маркировка полупроводникового диода представляет собой аббревиатуру от основных параметров устройства. Например, КД196В – кремниевый диод с напряжением пробоя до 0,3 В, напряжением 9,6, модель третьей разработки.

Исходя из этого:

  1. Первая буква определяет материал, из которого изготовлен прибор;
  2. Наименование устройства;
  3. Цифра, определяющая назначение;
  4. Напряжение прибора;
  5. Число, которое определяет прочие параметры (зависит от типа детали).

: применение диодов

Принцип работы

Полупроводниковые или выпрямительные диоды имеют довольно простой принцип работы. Как мы уже говорили, диод изготовлен из кремния таким образом, что один его конец p-типа, а другой конец типа n. Это означает, что оба контакта имеют различные характеристики.

На одном наблюдается избыток электронов, в то время как другой имеет избыток отверстий. Естественно, в устройстве есть участок, в котором все электроны заполняют определенные пробелы. Это означает, что внешние заряды отсутствуют.

В связи с тем, что эта область обедняется носителями заряда и известна как объединяющий участок.

Фото — принцип работы

Несмотря на то, что объединяющий участок очень мал, (часто его размер составляет несколько тысячных долей миллиметра), ток не может протекать в нем в обычном режиме.

Если напряжение подается так, что площадь типа p становится положительной, а тип n, соответственно, отрицательной, отверстия переходят к отрицательному полюсу и помогают электронам перейти через объединяющий участок. Точно так же электроны движутся к положительному контакту и как бы обходят объединительный.

Несмотря на то, что все частицы движутся с разным зарядом в разном направлении, в итоге они образуют однонаправленный ток, что помогает выпрямить сигнал и предупредить скачки напряжения на контактах диода.

Если напряжение прикладывается к полупроводниковому диоду в противоположном направлении, ток не будет проходить по нему.

Причина заключается в том, что отверстия привлекаются отрицательным потенциалом, который находится в области р-типа. Аналогично электроны притягиваются к положительному потенциалу, который применяется к области n-типа.

Это заставляет объединяющий участок увеличиваться в размере, из-за чего поток направленных частиц становится невозможным.

Фото — характеристики полупроводников

ВАХ-характеристики

Вольт амперная характеристика полупроводникового диода зависит от материала, из которого он изготовлен и некоторых параметров. Например, идеальный полупроводниковый выпрямитель или диод имеет следующие параметры:

  1. Сопротивление при прямом подключении – 0 Ом;
  2. Тепловой потенциал – VG = +-0,1 В.;
  3. На прямом участке RD > rD, т. е. прямое сопротивление больше, чем дифференциальное.

Если все параметры соответствуют, то получается такой график:

Фото — ВАХ идеального диода

Такой диод использует цифровая электротехника, лазерная индустрия, также его применяют при разработке медицинского оборудования. Он необходим при высоких требованиях к логическим функциям. Примеры – лазерный диод, фотодиод.

На практике, эти параметры очень отличаются от реальных. Многие приборы просто не способны работать с такой высокой точностью, либо такие требования не нужны. Эквивалентная схема характеристики реального полупроводника демонстрирует, что у него есть серьезные недостатки:

Фото — ВАХ в реальном полупроводниковом диоде

Данная ВАХ полупроводникового диода говорит о том, что во время прямого включения, контакты должны достигнуть максимального напряжения. Тогда полупроводник откроется для пропуска электронных заряженных частиц.

Эти свойства также демонстрируют, что ток будет протекать нормально и без перебоев. Но до момента достижения соответствия всех параметров, диод не проводит ток. При этом у кремниевого выпрямителя вольтаж варьируется в пределах 0,7, а у германиевого – 0,3 Вольт.

Работа прибора очень зависит от уровня максимального прямого тока, который может пройти через диод. На схеме он определяется ID_MAX.

Прибора так устроен, что во время включения прямым путем, он может выдержать только электрический ток ограниченной силы. В противном случае, выпрямитель перегреется и перегорит, как самый обычный светодиод.

Для контроля температуры используются разные виды устройств. Естественно, некоторые из них влияют на проводимость, но зато продлевают работоспособность диода.

Еще одним недостатком является то, что при пропуске переменного тока, диод не является идеальным изолирующим устройством. Он работает только в одном направлении, но всегда нужно учитывать ток утечки.

Его формула зависит от остальных параметров используемого диода. Чаще всего схемы его обозначают, как IOP. Исследование независимых экспертов установило, что германиевые пропускают до 200 µА, а кремниевые до 30 µА.

При этом многие импортные модели ограничиваются утечкой в 0.5 µА.

Фото — отечественные диоды

Все разновидности диодов поддаются напряжению пробой. Это свойство сети, которое характеризуется ограниченным напряжением. Любой стабилизирующий прибор должен его выдерживать (стабилитрон, транзистор, тиристор, диодный мост и конденсатор).

Когда внешняя разница потенциалов контактов выпрямительного полупроводникового диода значительно выше ограниченного напряжения, то диод становится проводником, в одну секунду снижая сопротивление до минимума.

Назначение устройства не позволяет ему делать такие резкие скачки, иначе это исказить ВАХ.

Источник: https://www.asutpp.ru/poluprovodnikovyj-diod.html

P-n-переход. Полупроводниковые диоды и применение их в технике

Презентация по физике p-n переход и его свойства. Полупроводниковый диод.

Уральский государственный технический университет – УПИ

Кафедра физики

РЕФЕРАТ

по физике на тему:

P-n-переход. Полупроводниковые диоды и применение их  в технике.

Преподаватель: Папушина Т.И.

Студент: Вакулина Е.С.

Группа: С-181

Екатеринбург

2001

.

Введение

Полупроводники как особый класс веществ, были известны еще с конца XIX века, только развитие теории твердого тела позволила понять их особенность задолго до этого были обнаружены:

  • эффект выпрямления тока на контакте металл-полупроводник;
  • фотопроводимость.

Были построены первые приборы на их основе.  О. В. Лосев (1923) доказал возможность использования контактов полупроводник-металл для усиления и генерации колебаний (кристаллический детектор).

Однако в последующие годы кристаллические детекторы были вытеснены электронными лампами и лишь в начале 50 – х годов с открытием транзисторов (США 1949 год) началось широкое применение полупроводников (главным образом германия и кремния в радиоэлектронике).

Одновременно началось интенсивное изучение свойств полупроводников, чему способствовало совершенствование методов очистки кристаллов и их легированию (введение в полупроводник определенных примесей).

 В СССР изучение полупроводников начались в конце 20 – х годов под руководством А.Ф. Иоффе в Физико-техническом институте АН СССР.

 Интерес к оптическим свойствам полупроводников возрос в связи с открытием вынужденного излучения в полупроводниках, что привело к созданию полупроводниковых лазеров вначале на  p – n – переходе, а затем на гетеропереходах. 

В последнее время большее распространение получили приборы, основанные на действии полупроводников. Эти вещества стали изучать сравнительно недавно, однако без них уже не может обойтись ни современная электроника, ни медицина, ни многие другие науки.

Рассмотрим подробнее принцип действия, типы и применение  в технике полупроводниковых диодов.

Электронно-дырочный переход

Рассмотрим неоднородный полупроводник, одна часть которого имеет электронную электропроводность, а другая – дырочную. При этом речь идет не о простом контакте двух различных полупроводников, а о едином монокристалле, у которого одна область легирована акцепторной примесью, а другая – донорной.

Между электронной и дырочной областями рассматриваемой полупроводниковой структуры всегда существует тонкий переходный слой, обладающий особыми свойствами. Этот слой называется электронно-дырочным или p-n-переходом.

Электронно-дырочный переход является основным структурным элементом большинства полупроводниковых приборов, его свойствами определяется принцип действия и функциональные возможности этих приборов.

Динамическое равновесие процессов диффузии и дрейфа в электронно-дырочном переходе

Примем, что в рассматриваемой p-n-структуре концентрация дырок в дырочной области выше, чем в электронной(pp>pn), а концентрация электронов в электронной области выше, чем в дырочной(nn>np), на границе электронной и дырочной областей существует градиент концентрации носителей заряда, вызывающий диффузионный ток: дырок из p-области в n-область и электронов из n-области в p-область. Диффузионный перенос заряженных частиц сопровождается нарушением электрической нейтральности полупроводника в непосредственной близости от границы областей: в p-области вследствие ухода дырок возникает не скомпенсированный отрицательный заряд, а в n-области вследствие ухода электронов – положительный заряд. В результате дырочная область приобретает отрицательный потенциал относительно электронной области и в переходном слое создается электрическое поле, вызывающее дрейфовый ток.

Но при отсутствии внешнего поля результирующий ток в полупроводнике должен быть равен нулю, это условие динамического равновесия процессов в переходе. Следовательно, диффузионный ток в переходе, вызываемый градиентом концентрации носителей заряда, должен уравновешиваться встречным дрейфующим током, обусловленным напряженностью собственного электрического поля E в переходе:

Таким образом, в электронно-дырочном переходе всегда существуют градиент концентрации заряда, вызывающий диффузию дырок и электронов, и обусловленный им градиент потенциала  собственного электрического поля du/dx=-E, вызывающий встречные дрейфующие токи, уравновешивающие диффузионные токи:

,

Наличие этих градиентов в p-n-переходе обуславливает существенное отличие его электрофизических свойств от свойств, прилегающих к нему p- и n-областей.

Энергетическая диаграмма электронно-дырочного перехода

Энергетические диаграммы уединенных p- и n-областей полупроводника показаны на рисунке. В p-области уровень Ферми WFp смещен в сторону валентной зоны, а в n-области уровень Ферми WFn – в сторону зоны проводимости.

В p-n-структуре энергия уровня Ферми WF должна быть всюду одинакова:

WF = WFp = WFn,

так как в любой точке тела он имеет одну и ту же вероятность заполнения его электроном, равную, по определению, ½, а одной и той же вероятности заполнения уровней должна соответствовать одна и та же их энергия.

Поскольку расположение энергетических зон относительно уровня Ферми в каждой из областей (дырочной и электронной) фиксировано, из постоянства энергии уровня Ферми по всей p-n-структуре вытекает, что валентные зоны, а также зоны проводимости p- и n-областей должны быть смещены относительно друг друга на величину WFn – WFp .

Из условий динамического равновесия процессов диффузии и дрейфа носителей заряда в p-n-переходе следует, что разность минимальных энергий электронов проводимости в p- и n-областях p-n-структуры Wcn – Wcp должна быть равна , так же как и разность энергий дырок, поэтому можно записать:

Концентрация электронов в зоне проводимости n-области выше, чем в p-области, так как минимальная их энергия здесь ниже (на величину ), чем в зоне проводимости p-области. Аналогично, концентрация дырок в валентной зоне p-области выше, чем в валентной зоне n-области.

Непосредственно  в области перехода энергетические уровни, как в зоне проводимости, так и в валентной зоне расположены наклонно, что свидетельствует о наличии градиента потенциала, а, следовательно, и электрического поля, которое выталкивает подвижные носители заряда из перехода. По этой причине концентрация электронов и дырок в переходе очень низка.

Устройство диода

Полупроводниковым диодом называется двух электродный прибор, основу которого составляет p-n-структура, состоящая из областей p-типа и n-типа, разделенных электронно-дырочным переходом (рис.). Одна из областей p-n-структуры, называемая эмиттером, имеет большую концентрацию основных носителей заряда *, чем другая область, называемая базой.

База эмиттер с помощью электродов (Э), образующих омические переходы, соединяются с выводами (В), посредством которых диод включается в электрическую цепь.

Основным структурным элементом полупроводникого диода, определяющим его функциональные свойства, является p-n-переход – тонкий промежуточный слой между p- и n-областями.

Статические вольтамперные характеристики диода

Статическая вольтамперная характеристика полупроводникового диода показана на рис. Здесь же пунктиром нанесена теоретическая вольтамперная характеристика электронно-дырочного перехода. Для наглядности обратная ветвь характеристики изображена в более крупном масштабе по току и в более мелком – по напряжению по сравнению с прямой ветвью.

В области малых токов реальная и теоретическая характеристики совпадают. Но при больших прямых токах, а также при высоких обратных напряжениях характеристики расходятся, что является следствием ряда причин, не учтенных при теоретическом анализе процессов в электронно-дырочном переходе.

В области больших прямых токов вследствие значительного падения напряжения на распределенном сопротивлении базы диода и сопротивлении электродов напряжение на электронно-дырочном переходе будет меньше напряжения U, приложенного к диоду, в результате чего реальная характеристика оказывается расположенной ниже теоретической и почти линейной.

Уравнение вольтамперной характеристики в этой области можно записать в виде:

,

где rб – электрическое сопротивление базы, электродов и вывода в диоде.

При повышении обратного напряжения обратный ток диода не остается постоянным, а медленно увеличивается. Одной из причин роста обратного тока диода является термическая генерация носителей зарядов в переходе.

Составляющую обратного тока через переход, которая зависит от числа генерируемых в переходе в единицу времени носителей заряда, условимся называть термотоком перехода IT.

С повышением обратного напряжения вследствие расширения перехода увеличивается его объем, поэтому число генерируемых в переходе носителей заряда и термоток перехода возрастают.

Другой причиной роста обратного тока диода является поверхностная проводимость электронно-дырочного перехода, обусловленные молекулярными и ионными пленками различного происхождения, покрывающими выходящую наружу поверхность перехода.

Из-за нестабильности физико-химической структуры этой поверхности, подверженной влиянию окружающей среды, ток утечки по поверхности Iу нестабилен, что приводит к «ползучести» характеристик диода. В современных диода поверхность перехода специально обрабатывают и защищают от внешних воздействий, поэтому ток  утечки всегда существенно меньше термотока.

Таким образом, полный и обратный ток диода:

.

Пробой диода

Когда обратное напряжение диода достигает определенного критического значения, ток диода начинает резко возрастать. Это явление называют пробоем диода.

Заметим, что пробой сопровождается выходом диода из строя лишь в том случае, когда возникает чрезмерный разогрев перехода, и происходят необратимые изменения его структуры.

Если же мощность, выделяющаяся в диоде, поддерживается на допустимом уровне, он сохраняет работоспособность и после пробоя. Более того, для некоторых типов диодов пробой является основным рабочим режимом.

Напряжение, при котором наступает пробой перехода, зависти от типа диода и может иметь величину от единиц до сотен вольт.

Различают два основных вида пробоя электронно-дырочного перехода: электрический и тепловой. В обоих случаях резкий рост тока связан с увеличением числа носителей заряда в переходе. При электрическом пробое число носителей заряда в переходе возрастает под действием сильного электрического поля и ударной ионизации атомов решетки, при тепловом пробое – за счет термической ионизации атомов.

Электрический пробой

Обычно длина свободного пробег электрона в полупроводнике значительно меньше толщины электронно-дырочного перехода. Если за время свободного пробега электроны успевают набрать достаточную энергию, то возникает ударная ионизация атомов электронами. В результате ударной ионизации наступает лавинное размножение носителей заряда.

Величина напряжения пробоя зависит от рода материала. Когда приложенное напряжение приближается к напряжению пробоя, коэффициент размножения носителей резко возрастает, растет число носителей заряда в переходе, сильно увеличивается ток через переход, наступает лавинный пробой.

При значительных напряженностях электрического поля (порядка 200 кВ/см), возможен туннельный пробой, обусловленный прямым переходом электронов из валентной зоны в зону проводимости смежной области, происходящим без изменения энергии электрона.

Практически при электрическом пробое могут иметь место в той или иной степени одновременно оба вида пробоя – туннельный и лавинный.

Величина напряжения пробоя существенно зависит от состояния поверхности перехода, где могут образовываться заряды того или иного знака, которые уменьшают или увеличивают результирующую напряженность поля у поверхности по сравнению ее значением в объеме. В неблагоприятном напряжении пробоя по поверхности может быть в несколько раз ниже, чем по объему. Это еще раз подчеркивает важность стабилизации свойств поверхности полупроводника, защиты ее от воздействий окружающей среды.

Тепловой пробой

Тепловой пробой диода возникает вследствие перегрева перехода проходящим через него током при недостаточном теплоотводе, не обеспечивающем устойчивость теплового режима перехода.

В режиме постоянного тока мощность, подводимая к переходу, определяется обратным напряжением и обратным током:

.

Эта мощность идет на разогрев перехода, в результате чего температура перехода возрастает. При этом увеличиваются концентрации носителей заряда в p-n-структуре и обратный ток перехода, что в свою очередь приводит к увеличению подводимой мощности, новому повышению температуры перехода и т. д.

Выделяющееся тепло в переходе рассеивается преимущественно за счет теплопроводности, поэтому отводимая от перехода мощность пропорциональна разности температур перехода и окружающей среды:

,

где RT – общее тепловое сопротивление диода.

Вольтамперная характеристика диода в режиме теплового пробоя соответствует кривой б на рис.#. Она имеет падающий характер, так как вследствие повышения температуры перехода концентрация носителей заряда в нем сильно увеличивается и электрическое сопротивление перехода уменьшается относительно быстрее, чем растет ток перехода.

Источник: https://www.turboreferat.ru/phisics/pnperehod-poluprovodnikovye-diody-i-primenenie/271042-1678964-page1.html

Презентация

Презентация по физике p-n переход и его свойства. Полупроводниковый диод.
Слайд 1Слайд 2Слайд 3Слайд 4Слайд 5Слайд 6Слайд 7Слайд 8Слайд 9Слайд 10Слайд 11Слайд 12Слайд 13Слайд 14Слайд 15Слайд 16

Презентацию на тему “p-n переход и его свойства” можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика.

Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад – нажмите на соответствующий текст под плеером.

Презентация содержит 16 слайд(ов).

Слайд 1

p-n переход и его свойства. Полупроводниковый диод.

Перов Евгений Юрьевич Учитель физики МБОУСОШ №19 Усть-Лабинский район Краснодарский край

Слайд 2

Температурный коэффициент удельного сопротивления ТК р – характеристика, позволяющая оценить изменение удельного электрического сопротивления материала с изменением его температуры.

При линейном изменении удельного сопротивления (в узком интервале температур) величину ТК р, 1/°С, вычисляют по формуле где р1 – удельное электрическое сопротивление материала при начальной температуре t1; p2 – удельное электрическое сопротивление материала при температуре t2. На рис.

1 можно видеть, что у проводников ТК р>0. Это указывает на рост электрического сопротивления с повышением температуры проводников. У полупроводников и диэлектриков ТК p

Слайд 5

Электронная проводимость

Слайд 6

Дырочная проводимость

Слайд 8

Слайд 9

P-n переход прямое включение

Слайд 10

P-n переход обратное включение

Слайд 13

Обозначение диода.

Слайд 14

Выпрямление переменного тока диодом.

Слайд 16

Используемые источники и литература

Электроника для всех. Автор DI HALT Основы на пальцах. Часть 3 (http://easyelectronics.ru/osnovy-na-palcax-chast-3.html). Компоненты и технологии. Светодиоды COSMO.(http://kit-e.ru/articles/led/2004_3_10.php). Battery and Energy Technologies (http://www.mpoweruk.com/semiconductors.htm).

Полупроводниковые приборы. Диод. (http://stoom.ru/content/view/162/83/). IMAGES SCIENTIFIC INSTRUMENTS (http://www.imagesco.com/articles/photovoltaic/photovoltaic-pg3.html). i-Школа. Электронно дырочный переход (http://www.home-edu.ru/user/f/00000951/27/27.htm).

Энергосберегающие светодиодные (LED) технологии освещения. (http://elites-montage.com.ua/ntled.php). Электрический ток в полупроводниках (http://neive.by.ru/bestsoft/4_13.htm). Основные свойства радиоматериалов (http://chem-bsu.narod.ru/ChemRadWeb/ch2/ch2.htm).

Электрические характеристики (http://ptu95.narod.ru/elektrical.html).

Уравнение Максвелла и его свойства

. . . . Рассмотрим цепь переменного тока, содержащую плоский конденсатор. . . . – Закон полного тока. . . . Закон полного тока. Теорема Гаусса. . …

Магнитное поле и его свойства

Девиз урока: «Скажи мне – и я забуду, покажи мне – и я запомню, вовлеки меня – и я научусь». Образовательные цели урока: проследить историю развития …

Водяной пар и его свойства

Сублимацией (возгонкой) называется процесс перехода вещества из твердого состояния в газообразное. Обратный процесс перехода газа в твердое состояние …

Трансформатор и его применение

Трансформатор – это .. Трансформа́тор — это статическое электромагнитное устройство, имеющее две или более индуктивно связанные обмотки на каком-либо …

Свет и его законы

Свет — электромагнитное излучение, испускаемое нагретым или находящимся в возбуждённом состоянии веществом, воспринимаемое человеческим глазом. Любой …

Радио и его изобретатель

Тест№1 повторение изученного. В электромагнитной волне вектор Е I 1. параллелен В 2. антипараллелен В 3. направлен перпендикулярно В II При этом вектор …

Движение и его характеристики

Механическое движение. Траектория. Путь. Равномерное движение. Неравномерное движение. Скорость. План. Механическое движение. Механическое движение …

Волновые и квантовые свойства света

17 век Две теории света:. Корпускулярная Свет – это поток частиц (корпускул), идущих от источника света. Сторонник теории: Исаак Ньютон. Волновая …

Виды излучений и их свойства

. Виды излучений. Свойства. Применение. Виды излучений. В настоящее время мы знаем 6 видов излучения – гамма-излучение, рентгеновское излучение, …

Биография Архимеда и его открытия

Краткий очерк деятельности Архимеда. «Дайте мне точку опоры, и я сдвину Землю». Вступление. К великому счастью для науки, до нас дошли некоторые произведения …

Закон Кулона и его применение

Как называется раздел физики, изучающий неподвижные заряженные тела? Электростатика Какое взаимодействие существует между заряженными телами, частицами? …

Электронные свойства поверхности

Теория функционала плотности основывается на теореме, сформулированной Хохенбергом и Коном, которая гласит, что полная энергия системы (например, …

Закон отражения и его применение

Как возникает такая красота ! Закон отражения света:. Угол падения равен углу отражения. 2. Луч падающей волны, луч отраженной волны и перпендикуляр …

Основные свойства воздуха

Воздух прозрачный и бесцветный. Голубое небо – толстый слой воздуха, освещённый солнцем. Атмосфера Земли – вид из космоса. Прозрачный воздух пропускает …

Магнитное поле, его свойства

Магнитное поле, его свойства. Цели урока:. – повторение, углубление и систематизация имеющихся у учащихся сведений о магнитных явлениях и магнитном …

Общие свойства металлов

Орлова Ольга Дмитриевна. . Аннотация. . Урок по теме «Общие свойства металлов». (9 класс, тема 5. «Общие свойства металлов»; программа курса …

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Источник: https://prezentacii.org/prezentacii/prezentacii-po-fizike/86434-p-n-perehod-i-ego-svojstva.html

Полупроводники p и n типа, p-n переход

Презентация по физике p-n переход и его свойства. Полупроводниковый диод.

Внесение в полупроводник примесей существенно влияет на поведение электронов и энергоуровни спектра кристалла. Валентные электроны примесных атомов создают энергетические уровни в запрещенной зоне спектра.

К примеру, если в решетке германия один атом замещен пятивалентным атомом фтора, то энергия дополнительного электрона станет меньше, чем энергия, которая соответствует нижней границе зоны проводимости. Энергетические уровни подобных примесных электронов находятся ниже дна зоны проводимости. Эти уровни заполненные электронами называют донорными.

Для перевода электронов с донорных уровней в зону проводимости необходима энергия меньше, чем у чистого полупроводника. После того как электроны переброшены в зону проводимости с донорных уровней, говорят, что в полупроводнике появилась проводимость n-типа.

Полупроводники с донорной примесью называют электронными (донорными) или полупроводниками n-типа (negative – отрицательный). Электроны в полупроводниках n — типа служат как основные носители заряда, дырки — неосновными. Энергетическая диаграмма такого полупроводника изображена на рис.1.

Полупроводники p типа

В полупроводнике, который содержит акцепторную примесь, электроны довольно легко переходят из валентной зоны на акцепторные уровни. В такой ситуации в валентной зоне появляются свободные дырки. Число дырок в данном случае существенно больше, чем свободных электронов, которые образовались при переходе из валентной зоны в зону проводимости.

В данной ситуации дырки — основные носители заряда, электроны — неосновные. Проводимость полупроводника, который включает акцепторную примесь, носит дырочный характер, сам проводник при этом называется дырочным (акцепторным) или полупроводником p-типа (positive – положительный). Энергетическая диаграмма полупроводника p-типа приведена на рис.2.

Рисунок 1.

Рисунок 2.

p-n переход

p-n переход создают в естественном полупроводнике легированием донорными и акцепторными примесями по разные стороны от границы раздела. При этом область, в которую вводились донорные примеси становится n-областью с электронной проводимостью, область в которую ввели акцепторные примеси – p-областью с преимущественной дырочной проводимостью.

Так как в n- области концентрация электронов больше (в сравнении с концентрацией дырок), а в p- области наоборот, то электроны диффундируют из n- области, в p- область, а дырки в обратном направлении.

В результате в n- области возникает положительный заряд, а в p- области отрицательный Появляющаяся таким образом, разность потенциалов и электрическое поле пытаются замедлить диффузию положительных и отрицательных зарядов. При некотором напряжении возникает равновесие.

Так как заряд электрона меньше нуля, то рост потенциала ведет к уменьшению потенциальной энергии электронов и росту потенциальной энергии дырок. Как следствие роста потенциала n- области потенциальная энергия электронов в этой области уменьшается, а в p- области увеличивается.

С потенциальной энергией дырок дело обстоит наоборот. Характер изменения электрического потенциала совпадает с характером изменения потенциальной энергии дырок.

Итак, возникает потенциальный барьер, который противостоит потоку диффузии электронов и дырок со стороны перехода с их большей концентрацией, то есть напору электронов со стороны n- области и напору дырок из p- области.

Этот потенциальный барьер растет до величины, при которой появляющееся на переходе электрическое поле порождает такие токи из носителей заряда, которые полностью компенсируют диффузионные потоки.

Так достигается стационарное состояние.

Электроны и дырки в зоне проводимости полупроводников имеют конечное время жизни. Дырки, которые попали из p- области в n- область диффундируют в ней в течение некоторого времени, а затем аннигилируются с электронами.

Так же ведут себя электроны, которые попали из n- области в p- область.

Следовательно, концентрация избыточных дырок в n- области и концентрация электронов в p- области уменьшается (по экспоненте) при удалении от границы перехода.

[Примечание]Обычно энергия Ферми p и n- областей полупроводников отличается примерно на 1эВ. Значит, разность потенциалов, которая появляется на переходе и выравнивает энергии Ферми по разные стороны перехода, имеет величину порядка 1В. [/Примечание]

Электрический ток, через p-n переход

Допустим, что напряжение приложено так, что у n- области потенциал имеет знак минус, со стороны p- области — плюс. Потенциальный барьер в таком случае, для основных носителей тока уменьшатся.

Следовательно, сила тока основных носителей растет.

Сила тока неосновных носителей почти не изменяется, так как диффузионный ток определен концентрацией носителей заряда и не зависит от приложенной разности потенциалов.

Если внешнее напряжение приложено так, что у n- области потенциал больше нуля, а со стороны p- области меньше нуля, то для основных носителей тока потенциальные барьеры увеличиваются.

Тогда ток основных носителей почти равен 0. Ток неосновных носителей не изменяется. Если ток в направлении от n- области к p-области не течет, то такое направление называют запорным.

Обратное направление называют проходным.

Переход металл — полупроводник имеет способность пропускать ток в одном направлении и не пропускать в другом. Причем, полупроводник может быть любого типа. Это явление связано с тем, что любой полупроводник по отношению к металлу очень беден свободными электронами. В случае перехода металл — проводник, проходным направлением будет направление от полупроводника к металлу.

p-n переход действует как диод, так как имеет одностороннюю проводимость. Наиболее часто применяемыми материалами для создания p-n переходов служат германий и кремний.

У германия концентрация основных носителей больше, чем у кремния, больше их подвижность.

Из-за этого проводимость p-n переходов в германии в проходном направлении существенно больше, чем у кремния, но соответственно больше обратный ток. Кремний же можно использовать в широком спектре температур.

Пример 1

Задание: Вольт — амперная характеристика для p-n перехода в кремний изображена на рис. 3. p-n перехода для германия на рис. 4. Сравните их, объясните различия.

Рисунок 3.

Рисунок 4.

Решение:

Вольтамперная характеристика p-n перехода показывает, переход имеет одностороннюю проводимость, а именно проводит ток в направлении из области p в область n. (Положительные значения напряжение U соответствуют изменению потенциала на переходе от p области к n области).

Возможной причиной отличий вольтамперной характеристики кремния (рис.3) от вольт — амперной характеристики германия служит низкая концентрация неосновных носителей в кремнии. Получается при небольших приложенных напряжениях плотность тока (j) неосновных носителей очень мала и только при U=0,6B сила тока начинает расти по экспоненте (у германия это происходит при U=0 B).

Пример 2

Задание: Что такое туннельный эффект?

Решение:

При большой концентрации атомов примеси в полупроводниках происходит расширение примесных уровней. Уровни перекрывают границу между зонами.

Как результат — уровень Ферми попадает внутрь либо проводящей, либо валентной зоны. При отсутствии внешнего напряжения энергии Ферми по разные стороны перехода одинаковы.

При сильном легировании переход становится узким, концентрация неосновных носителей мала.

Если приложить внешнее напряжение в проходном направлении, то появляется небольшой диодный ток. Но, так как по разные стороны перехода, который делится потенциальным барьером энергии носителей равны, возникает так называемый туннельный эффект Носители проходят через потенциальный барьер без изменения энергии.

Из-за этого через потенциальный барьер течет значительный ток. При увеличении напряжения энергия электронов в n-области растет, в p –области уменьшатся, при этом область перекрытия примесных уровней становится меньше. Как следствие, уменьшается сила тока.

(Максимум тока достигается, когда зоны перекрывают друг друга наибольшим образом). В тот момент, когда примесные зоны сдвигаются относительно друг друга настолько, что каждой из них на другой стороне перехода противостоит запрещенная зона, туннелированние прекращается. При этом сила тока через переход уменьшается.

При высоких напряжениях зоны проводимости n и p областей оказываются на одном уровне, возникает обычный диодный ток. Сила тока снова растет.

В интервале от первого максимума тока до следующего за ним минимума туннельный диод проявляет эффект отрицательного сопротивления, когда увеличение напряжения ведет к уменьшению силы тока. Рис.5 Вольт — амперная характеристика туннельного диода.

Рисунок 5.

Источник: https://spravochnick.ru/fizika/mehanizmy_elektroprovodnosti/poluprovodniki_p_i_n_tipa_p-n_perehod/

P-N-переход и диод

Презентация по физике p-n переход и его свойства. Полупроводниковый диод.

Как упоминалось ранее электропроводность полупроводников сильно зависит от концентрации примесей. Полупроводники, электрофизические свойства которых зависят от примесей других химических элементов, называются примесными полупроводниками. Примеси бывают двух видов донорной и акцепторной.

Донорной называется примесь, атомы которой дают полупроводнику свободные электроны, а получаемая в этом случае электропроводность, связанная с движением свободных электронов, — электронной. Полупроводник с электронной проводимостью называется электронным полупроводником и условно обозначается латинской буквой n — первой буквой слова «негативный».

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Рассмотрим процесс образования электронной проводимости в полупроводнике. За основной материал полупроводника возьмём кремний (кремниевые полупроводники самые распространённые). У кремния (Si) на внешней орбите атома есть четыре электрона, которые обуславливают его электрофизические свойства (т.е.

они перемещаясь под действием напряжения создают электрический ток). При введении в кремний атомов примеси мышьяка (As), у которого на внешней орбите пять электронов, четыре электрона вступают во взаимодействие с четырьмя электронами кремния, образуя ковалентную связь, а пятый электрон мышьяка остаётся свободным.

При этих условиях он легко отделяется от атома и получает возможность перемещаться в веществе.

Акцепторной называется примесь, атомы которой принимают электроны от атомов основного полупроводника. Получаемая при этом электропроводность, связанная с перемещением положительных зарядов — дырок, называется дырочной. Полупроводник с дырочной электропроводностью называется дырочным полупроводником и условно обозначается латинской буквой p — первой буквой слова «позитивный».

Рассмотрим процесс образования дырочной проводимости.

при введении в кремний атомов примеси индия (In), у которого на внешней орбите три электрона, они вступают в связь с тремя электронами кремния, но эта связь оказывается неполной: не хватает ещё одного электрона для связи с четвёртым электроном кремния.

Атом примеси присоединяет к себе недостающий электрон от одного из расположенных поблизости атомов основного полупроводника, после чего он оказывается связанным со всеми четырьмя соседними атомами.

Благодаря добавлению электрона он приобретает избыточный отрицательный заряд, то есть превращается в отрицательный ион. В тоже время атом полупроводника, от которого к атому примеси ушёл четвёртый электрон оказывается связанным с соседними атомами только тремя электронами. таким образом, возникает избыток положительного заряда и появляется незаполненная связь, то есть дырка.

Одним из важных свойств полупроводника является то, что при наличии дырок через него может проходить ток, даже если в нём нет свободных электронов. Это объясняется способностью дырок переходить с одного атома полупроводника на другой.

Перемещение «дырок» в полупроводнике

Вводя в часть полупроводника донорную примесь, а в другую часть — акцепторную, можно получить в нём области с электронной и дырочной проводимостью. На границе областей электронной и дырочной проводимости образуется так называемый электронно-дырочный переход.

P-N-переход

Рассмотрим процессы происходящий при прохождении тока через электронно-дырочный переход. Левый слой, обозначенный буквой n, имеет электронную проводимость.

Ток в нём связан с перемещением свободных электронов, которые условно обозначены кружками со знаком «минус». Правый слой, обозначенный буквой p, обладает дырочной проводимостью.

Ток в этом слое связан с перемещением дырок, которые на рисунке обозначены кружками с «плюсом».

Движение электронов и дырок в режиме прямой проводимости

Движение электронов и дырок в режиме обратной проводимости.

При соприкосновении полупроводников с различными типами проводимости электроны вследствие диффузии начнут переходить в p-область, а дырки — в n-область, в результате чего пограничный слой n-области заряжается положительно, а пограничный слой p-области — отрицательно.

Между областями возникает электрическое поле, которое является как бы барьеров для основных носителей тока, благодаря чему в p-n переходе образуется область с пониженной концентрацией зарядов. Электрическое поле в p-n переходе называют потенциальным барьером, а p-n переход — запирающим слоем.

Если направление внешнего электрического поля противоположно направлению поля p-n перехода («+» на p-области, «-» на n-области), то потенциальный барьер уменьшается, возрастает концентрация зарядов в p-n переходе, ширина и, следовательно, сопротивление перехода уменьшается.

При изменении полярности источника внешнее электрическое поле совпадает с направлением поля p-n перехода, ширина и сопротивление перехода возрастает. Следовательно, p-n переход обладает вентильными свойствами.

Полупроводниковый диод

Диодом называется электро преобразовательный полупроводниковый прибор с одним или несколькими p-n переходами и двумя выводами. В зависимости от основного назначения и явления используемого в p-n переходе различают несколько основных функциональных типов полупроводниковых диодов: выпрямительные, высокочастотные, импульсные, туннельные, стабилитроны, варикапы.

Основной характеристикой полупроводниковых диодов является вольт-амперная характеристика (ВАХ). Для каждого типа полупроводникового диода ВАХ имеет свой вид, но все они основываются на ВАХ плоскостного выпрямительного диода, которая имеет вид:

Вольт-амперная характеристика (ВАХ) диода: 1 — прямая вольт-амперная характеристика; 2 — обратная вольт-амперная характеристика; 3 — область пробоя; 4 — прямолинейная аппроксимация прямой вольт-амперной характеристики; Uпор — пороговое напряжение; rдин — динамическое сопротивление; Uпроб — пробивное напряжение

Масштаб по оси ординат для отрицательных значений токов выбран во много раз более крупным, чем для положительных.

Вольт-амперные характеристики диодов проходят через нуль, но достаточно заметный ток появляется лишь при пороговом напряжении (Uпор), которое для германиевых диодов равно 0,1 — 0,2 В, а у кремниевых диодов равно 0,5 — 0,6 В.

В области отрицательных значений напряжения на диоде, при уже сравнительно небольших напряжениях (Uобр.) возникает обратный ток (Іобр).

Этот ток создается неосновными носителями: электронами р-области и дырками n-области, переходу которых из одной области в другую способствует потенциальный барьер вблизи границы раздела.

С ростом обратного напряжения увеличение тока не происходит, так как количество неосновных носителей, оказывающихся в единицу времени на границе перехода, не зависит от приложенного извне напряжения, если оно не очень велико.

Обратный ток для кремниевых диодов на несколько порядков меньше, чем для германиевых. Дальнейшее увеличение обратного напряжения до напряжения пробоя (Uпроб) приводит к тому что электроны из валентной зоны переходят в зону проводимости, возникает эффект Зенера. Обратный ток при этом резко увеличивается, что вызывает нагрев диода и дальнейшее увеличение тока приводит к тепловому пробою и разрушению p-n-перехода.

Обозначение и определение основных электрических параметров диодов

Обозначение полупроводникового диода

Как указывалось ранее диод в одну сторону ток проводит (т. е. представляет собой в идеале просто проводник с малым сопротивлением), в другую – нет (т. е.

превращается в проводник с очень большим сопротивлением), одним словом, обладает односторонней проводимостью. Соответственно выводов у него всего два.

Они как повелось ещё со времён ламповой техники, называются анодом (положительным выводом) и катодом (отрицательным).

Все полупроводниковые диоды можно разделить на две группы: выпрямительные и специальные. Выпрямительные диоды, как следует из самого названия, предназначены для выпрямления переменного тока.

В зависимости от частоты и формы переменного напряжения они делятся на высокочастотные, низкочастотные и импульсные.

Специальные типы полупроводниковых диодов используют различные свойства p-n-переходов; явление пробоя, барьерную емкость, наличие участков с отрицательным сопротивлением и др.

Выпрямительные диоды

Конструктивно выпрямительные диоды делятся на плоскостные и точечные, а по технологии изготовления на сплавные, диффузионные и эпитаксиальные.

Плоскостные диоды благодаря большой площади p-n-перехода используют для выпрямления больших токов. Точечные диоды имеют малую площадь перехода и, соответственно, предназначены для выпрямления малых токов.

Для увеличения напряжения лавинного пробоя используют выпрямительные столбы, состоящие из ряда последовательно включенных диодов.

Выпрямительные диоды большой мощности называют силовыми. Материалом для таких диодов обычно служит кремний или арсенид галлия. Кремниевые сплавные диоды используют для выпрямления переменного тока с частотой до 5 кГц.

Кремниевые диффузионные диоды могут работать на повышенной частоте, до 100 кГц. Кремниевые эпитаксиальные диоды с металлической подложкой (с барьером Шотки) могут использоваться на частотах до 500 кГц.

Арсенидгалиевые диоды способны работать в диапазоне частот до нескольких МГц.

Силовые диоды обычно характеризуются набором статических и динамических параметров. К статическим параметрам диода относятся:

  • падение напряжения Uпр на диоде при некотором значении прямого тока;
  • обратный ток Iобр при некотором значении обратного напряжения;
  • среднее значение прямого тока Iпр.ср.;
  • импульсное обратное напряжение Uобр.и.;

К динамическим параметрам диода относятся его временные и частотные характеристики. К таким параметрам относятся:

  • время восстановления tвос обратного напряжения;
  • время нарастания прямого тока Iнар.;
  • предельная частота без снижения режимов диода fmax.

Статические параметры можно установить по вольт-амперной характеристике диода.

Время обратного восстановления диода tвос является основным параметром выпрямительных диодов, характеризующим их инерционные свойства. Оно определяется при переключении диода с заданного прямого тока Iпр на заданное обратное напряжение Uобр. Во время переключения напряжение на диоде приобретает обратное значение.

Из-за инерционности диффузионного процесса ток в диоде прекращается не мгновенно, а в течении времени tнар. По существу, происходит рассасывание зарядов на границе p-n-перехода (т. е. разряд эквивалентной емкости). Из этого следует, что мощность потерь в диоде резко повышается при его включении, особенно, при выключении.

Следовательно, потери в диоде растут с повышением частоты выпрямляемого напряжения.

При изменении температуры диода изменяются его параметры. Наиболее сильно от температуры зависят прямое напряжение на диоде и его обратный ток.

Приблизительно можно считать, что ТКН (температурный коэффициент напряжения) Uпр = -2 мВ/К, а обратный ток диодаимеет положительный коэффициент.

Так при увеличении температуры на каждые 10 °С обратный ток германиевых диодов увеличивается в 2 раза, а кремниевых – 2,5 раз.

Диоды с барьером Шотки

Для выпрямления малых напряжений высокой частоты широко используются диоды с барьером Шотки.

В этих диодах вместо p-n-перехода используется контакт металлической поверхности с полупроводником.

В месте контакта возникают обеднённые носителями заряда слои полупроводника, которые называются запорными. Диоды с барьером Шотки отличаются от диодов с p-n-переходом по следующим параметрам:

  • более низкое прямое падение напряжения;
  • имеют более низкое обратное напряжение;
  • более высокий ток утечки;
  • почти полностью отсутствует заряд обратного восстановления.

Две основные характеристики делают эти диоды незаменимыми: малое прямое падение напряжения и малое время восстановления обратного напряжения. Кроме того, отсутствие неосновных носителей, требующих время на обратное восстановление, означает физическое отсутствие потерь на переключение самого диода.

Максимальное напряжение современных диодов Шотки составляет около 1200 В. При этом напряжении прямое напряжение диода Шотки меньше прямого напряжения диодов с p-n-переходом на 0,2…0,3 В.

Преимущества диода Шотки становятся особенно заметны при выпрямлении малых напряжений. Например, 45-вольтный диод Шотки имеет прямое напряжение 0,4…0,6 В, а при том же токе диод с p-n-переходом имеет падение напряжения 0,5…1,0 В.

При понижении обратного напряжения до 15 В прямое напряжение уменьшается до 0,3…0,4 В. В среднем применение диодов Шотки в выпрямителе позволяет уменьшить потери примерно на 10…15 %.

Максимальная рабочая частота диодов Шотки превышает 200 кГц.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Источник: https://www.electronicsblog.ru/nachinayushhim/p-n-perexod-i-diod.html

Ваш педагог
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: