- Методы решения тригонометрических уравнений –
- Методы решения тригонометрических уравнений
- 1. Алгебраический метод.
- 2. Разложение на множители.
- 4. Переход к половинному углу.
- 5. Введение вспомогательного угла.
- 6. Преобразование произведения в сумму
- 7. Универсальная подстановка.
- Алгебра – 10 класс. Тригонометрические уравнения
- Что такое тригонометрические уравнения?
- Простейшие тригонометрические уравнения имеют вид: Т(kx+m)=a, T- какая либо тригонометрическая функция
- Ещё примеры тригонометрических уравнений
- Два основных метода решения
- Пример решения уравнения
- Однородные тригонометрические уравнения
- Однородные тригонометрические уравнения второй степени
- Решить пример №:3
- Решить пример №:4
- Решить пример №:5
- Задачи для самостоятельного решения
- Геометрия. Урок 1. Тригонометрия
- Тригонометрия в прямоугольном треугольнике
- Тригонометрия: Тригонометрический круг
- Основное тригонометрическое тождество
- Тригонометрия: Таблица значений тригонометрических функций
- Тригонометрия: градусы и радианы
- Тригонометрия: Формулы приведения
- Тригонометрия: Теорема синусов
- Тригонометрия: Расширенная теорема синусов
- Тригонометрия: Теорема косинусов
- Тригонометрия: Тригонометрические уравнения
- Примеры решений заданий из ОГЭ
- Простейшие тригонометрические уравнения
- Решение уравнения sin x = a
- Решение уравнения cos x = a
- Решение уравнения tg x = a
- Решение уравнения ctg x = a
- Тригонометрические уравнения
- Введение дополнительного угла
- Универсальная подстановка
- Метод оценок
- Учёт тригонометрических неравенств
- Специальные приёмы
Методы решения тригонометрических уравнений –
Тригонометрические уравнения. Уравнение, содержащее неизвестное под знаком тригонометрической функции, называется тригонометрическим.
Методы решения тригонометрических уравнений
Решение тригонометрического уравнения состоит из двух этапов: преобразование уравнения для получения его простейшего вида ( см. выше ) и решение полученного простейшего тригонометрического уравнения. Существует семь основных методов решения тригонометрических уравнений.
1. Алгебраический метод.
Этот метод нам хорошо известен из алгебры
( метод замены переменной и подстановки ).
2. Разложение на множители.
Этот метод рассмотрим на примерах.
П р и м е р 1. Решить уравнение: sin x + cos x = 1 .
Р е ш е н и е . Перенесём все члены уравнения влево:
sin x + cos x – 1 = 0 ,
преобразуем и разложим на множители выражение в
левой части уравнения:
П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.
Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,
sin x · cos x – sin 2 x = 0 ,
sin x · ( cos x – sin x ) = 0 ,
П р и м е р 3. Решить уравнение: cos 2x – cos 8x + cos 6x = 1.
Р е ш е н и е . cos 2x + cos 6x = 1 + cos 8x ,
2 cos 4x cos 2x = 2 cos ² 4x ,
cos 4x · ( cos 2x – cos 4x ) = 0 ,
cos 4x · 2 sin 3x · sin x = 0 ,
1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,
Уравнение называется однородным относительно sin и cos, есливсе его члены одной и той же степени относительно sin и cos одного и того же угла. Чтобы решить однородное уравнение, надо: а) перенести все его члены в левую часть; б) вынести все общие множители за скобки; в) приравнять все множители и скобки нулю; г) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на cos ( или sin ) в старшей степени; д) решить полученное алгебраическое уравнение относительно tan . П р и м е р . Решить уравнение: 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2. Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x , sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 , tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 , корни этого уравнения: y1 = -1, y2 = -3, отсюда 1) tan x = –1, 2) tan x = –3, |
4. Переход к половинному углу.
Рассмотрим этот метод на примере:
П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.
Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =
= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,
2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,
tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,
. . . . . . . . . .
5. Введение вспомогательного угла.
Рассмотрим уравнение вида:
a sin x + b cos x = c ,
где a, b, c – коэффициенты; x – неизвестное.
Теперь коэффициенты уравнения обладают свойствами синуса и косинуса, а именно: модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1. Тогда можно обозначить их соответственно как cos и sin ( здесь – так называемый вспомогательный угол ), и наше уравнение принимает вид:
6. Преобразование произведения в сумму
Здесь используются соответствующие формулы.
П р и м е р . Решить уравнение: 2 sin x · sin 3x = cos 4x.
Р е ш е н и е . Преобразуем левую часть в сумму:
cos 4x – cos 8x = cos 4x ,
cos 8x = 0 ,
8x = p / 2 + pk ,
x = p / 16 + pk / 8 .
7. Универсальная подстановка.
Рассмотрим этот метод на примере.
П р и м е р . Решить уравнение: 3 sin x – 4 cos x = 3 .
Таким образом, решение даёт только первый случай.
Источник: https://www.sites.google.com/site/trigonometriavneskoly/metody-resenia-trigonometriceskih-uravnenij
Алгебра – 10 класс. Тригонометрические уравнения
Что будем изучать:
1. Что такое тригонометрические уравнения?2. Простейшие тригонометрические уравнения.3. Два основных метода решения тригонометрических уравнений.4. Однородные тригонометрические уравнения.5. Примеры.
Что такое тригонометрические уравнения?
Ребята, мы с вами изучили уже арксинуса, арккосинус, арктангенс и арккотангенс. Теперь давайте посмотрим на тригонометрические уравнения в общем.
Тригонометрические уравнения – уравнения в котором переменная содержится под знаком тригонометрической функции.
Повторим вид решения простейших тригонометрических уравнений: 1)Если |а|≤ 1, то уравнение cos(x) = a имеет решение: x= ± arccos(a) + 2πk 2) Если |а|≤ 1, то уравнение sin(x) = a имеет решение:3) Если |а| > 1, то уравнение sin(x) = a и cos(x) = a не имеют решений4) Уравнение tg(x)=a имеет решение: x=arctg(a)+ πk 5) Уравнение ctg(x)=a имеет решение: x=arcctg(a)+ πk Для всех формул k- целое число
Простейшие тригонометрические уравнения имеют вид: Т(kx+m)=a, T- какая либо тригонометрическая функция
Пример. Решить уравнения: а) sin(3x)= √3/2 Решение: а) Обозначим 3x=t, тогда наше уравнение перепишем в виде: sin(t)=1/2. Решение этого уравнения будет: t=((-1)n)arcsin(√3 /2)+ πn. Из таблицы значений получаем: t=((-1)n)×π/3+ πn. Вернемся к нашей переменной: 3x =((-1)n)×π/3+ πn, тогда x= ((-1)n)×π/9+ πn/3 Ответ: x= ((-1)n)×π/9+ πn/3, где n-целое число. (-1)n – минус один в степени n.
Ещё примеры тригонометрических уравнений
Решить уравнения: а) cos(x/5)=1 б)tg(3x- π/3)= √3 Решение: а) В этот раз перейдем непосредственно к вычислению корней уравнения сразу:x/5= ± arccos(1) + 2πk. Тогда x/5= πk => x=5πk Ответ: x=5πk, где k – целое число. б) Запишем в виде: 3x- π/3=arctg(√3)+ πk.
Мы знаем что: arctg(√3)= π/3 3x- π/3= π/3+ πk => 3x=2π/3 + πk => x=2π/9 + πk/3 Ответ: x=2π/9 + πk/3, где k – целое число. Решить уравнения: cos(4x)= √2/2. И найти все корни на отрезке [0; π].
Решение: Решим в общем виде наше уравнение: 4x= ± arccos(√2/2) + 2πk 4x= ± π/4 + 2πk; x= ± π/16+ πk/2;
Теперь давайте посмотрим какие корни попадут на наш отрезок. При kПри k=0, x= π/16, мы попали в заданный отрезок [0; π].При к=1, x= π/16+ π/2=9π/16, опять попали.
При k=2, x= π/16+ π=17π/16, а тут вот уже не попали, а значит при больших k тоже заведомо не будем попадать. Ответ: x= π/16, x= 9π/16
Два основных метода решения
Мы рассмотрели простейшие тригонометрические уравнения, но существуют и более сложные. Для их решения применяют метод ввода новой переменной и метод разложения на множители. Давайте рассмотрим примеры. Решим уравнение:
Решение:Для решения нашего уравнения воспользуемся методом ввода новой переменной, обозначим: t=tg(x).
В результате замены получим: t2 + 2t -1 = 0
Найдем корни квадратного уравнения: t=-1 и t=1/3 Тогда tg(x)=-1 и tg(x)=1/3, получили простейшее тригонометрическое уравнение, найдем его корни. x=arctg(-1) +πk= -π/4+πk; x=arctg(1/3) + πk. Ответ: x= -π/4+πk; x=arctg(1/3) + πk.
Пример решения уравнения
Решить уравнений: 2sin2(x) + 3 cos(x) = 0
Решение:
Воспользуемся тождеством: sin2(x) + cos2(x)=1
Наше уравнение примет вид:2-2cos2(x) + 3 cos (x) = 0
2 cos2(x) – 3 cos(x) -2 = 0
введем замену t=cos(x): 2t2 -3t – 2 = 0
Решением нашего квадратного уравнения являются корни: t=2 и t=-1/2 Тогда cos(x)=2 и cos(x)=-1/2. Т.к. косинус не может принимать значения больше единицы, то cos(x)=2 не имеет корней. Для cos(x)=-1/2: x= ± arccos(-1/2) + 2πk; x= ±2π/3 + 2πk Ответ: x= ±2π/3 + 2πk
Однородные тригонометрические уравнения
Определение: Уравнение вида a sin(x)+b cos(x) называются однородными тригонометрическими уравнениями первой степени. Уравнения вида
однородными тригонометрическими уравнениями второй степени.
Для решения однородного тригонометрического уравнения первой степени разделим его на cos(x):Делить на косинус нельзя если он равен нулю, давайте убедимся что это не так:
Пусть cos(x)=0, тогда asin(x)+0=0 => sin(x)=0, но синус и косинус одновременно не равны нулю, получили противоречие, поэтому можно смело делить на ноль.
Решить уравнение:
Пример: cos2(x) + sin(x) cos(x) = 0 Решение: Вынесем общий множитель: cos(x)(c0s(x) + sin (x)) = 0 Тогда нам надо решить два уравнения: cos(x)=0 и cos(x)+sin(x)=0 cos(x)=0 при x= π/2 + πk; Рассмотрим уравнение cos(x)+sin(x)=0 Разделим наше уравнение на cos(x): 1+tg(x)=0 => tg(x)=-1 => x=arctg(-1) +πk= -π/4+πk Ответ: x= π/2 + πk и x= -π/4+πk
Однородные тригонометрические уравнения второй степени
Как решать однородные тригонометрические уравнения второй степени? Ребята, придерживайтесь этих правил всегда! 1.
Посмотреть чему равен коэффициент а, если а=0 то тогда наше уравнение примет вид cos(x)(bsin(x)+ccos(x)), пример решения которого на предыдущем слайде 2.
Если a≠0, то нужно поделить обе части уравнения на косинус в квадрате, получим:
Делаем замену переменной t=tg(x) получаем уравнение:
Решить пример №:3
Решить уравнение:
Решение:
Разделим обе части уравнения на косинус квадрат:
Делаем замену переменной t=tg(x): t2 + 2 t – 3 = 0 Найдем корни квадратного уравнения: t=-3 и t=1 Тогда: tg(x)=-3 => x=arctg(-3) + πk=-arctg(3) + πk tg(x)=1 => x= π/4+ πk Ответ: x=-arctg(3) + πk и x= π/4+ πk
Решить пример №:4
Решить уравнение:
Решение:Преобразуем наше выражение:
Решать такие уравнение мы умеем: x= – π/4 + 2πk и x=5π/4 + 2πk
Ответ: x= – π/4 + 2πk и x=5π/4 + 2πk
Решить пример №:5
Решить уравнение:
Решение:Преобразуем наше выражение:
Введем замену tg(2x)=t:22 – 5t + 2 = 0 Решением нашего квадратного уравнения будут корни: t=-2 и t=1/2 Тогда получаем: tg(2x)=-2 и tg(2x)=1/22x=-arctg(2)+ πk => x=-arctg(2)/2 + πk/2 2x= arctg(1/2) + πk => x=arctg(1/2)/2+ πk/2 Ответ: x=-arctg(2)/2 + πk/2 и x=arctg(1/2)/2+ πk/2
Задачи для самостоятельного решения
1) Решить уравнение а) sin(7x)= 1/2 б) cos(3x)= √3/2 в) cos(-x) = -1 г) tg(4x) = √3 д) ctg(0.5x) = -1.7 2) Решить уравнения: sin(3x)= √3/2. И найти все корни на отрезке [π/2; π ].
3) Решить уравнение: ctg2(x) + 2ctg(x) + 1 =0
4) Решить уравнение: 3 sin 2(x) + √3sin (x) cos(x) = 0
5) Решить уравнение:3sin2(3x) + 10 sin(3x)cos(3x) + 3 cos2(3x) =0
6)Решить уравнение:cos2(2x) -1 – cos(x) =√3/2 -sin2(2x)
Источник: https://mathematics-tests.com/10-klass-urok-na-temu-trigonometricheskie-uravneniya
Геометрия. Урок 1. Тригонометрия
Смотрите бесплатные видео-уроки по теме “Тригонометрия” на канале Ёжику Понятно.
-уроки на канале Ёжику Понятно.
страницы:
Тригонометрия в прямоугольном треугольнике
Рассмотрим прямоугольный треугольник. Для каждого из острых углов найдем прилежащий к нему катет и противолежащий.
Синус угла – отношение противолежащего катета к гипотенузе.
sin α = Противолежащий катет гипотенуза
Косинус угла – отношение прилежащего катета к гипотенузе.
cos α = Прилежащий катет гипотенуза
Тангенс угла – отношение противолежащего катета к прилежащему (или отношение синуса к косинусу).
tg α = Противолежащий катет Прилежащий катет
Котангенс угла – отношение прилежащего катета к противолежащему (или отношение косинуса к синусу).
ctg α = Прилежащий катет Противолежащий катет
Рассмотрим прямоугольный треугольник ABC, угол C равен 90°:
sin ∠ A = C B A B
cos ∠ A = A C A B
tg ∠ A = sin ∠ A cos ∠ A = C B A C
ctg ∠ A = cos ∠ A sin ∠ A = A C C B
sin ∠ B = A C A B
cos ∠ B = B C A B
tg ∠ B = sin ∠ B cos ∠ B = A C C B
ctg ∠ B = cos ∠ B sin ∠ B = C B A C
Тригонометрия: Тригонометрический круг
Тригонометрия на окружности – это довольно интересная абстракция в математике. Если понять основной концепт так называемого “тригонометрического круга”, то вся тригонометрия будет вам подвластна. В описании к видео есть динамическая модель тригонометрического круга.
Тригонометрический круг – это окружность единичного радиуса с центром в начале координат.
Такая окружность пересекает ось х в точках ( − 1 ; 0 ) и ( 1 ; 0 ) , ось y в точках ( 0 ; − 1 ) и ( 0 ; 1 )
На данной окружности будет три шкалы отсчета – ось x, ось y и сама окружность, на которой мы будем откладывать углы.
Углы на тригонометрической окружности откладываются от точки с координатами ( 1 ; 0 ) , – то есть от положительного направления оси x, против часовой стрелки. Пусть эта точка будет называться S (от слова start). Отметим на окружности точку A. Рассмотрим ∠ S O A , обозначим его за α . Это центральный угол, его градусная мера равна дуге, на которую он опирается, то есть ∠ S O A = α = ∪ S A .
Давайте найдем синус и косинус этого угла. До этого синус и косинус мы искали в прямоугольном треугольнике, сейчас будем делать то же самое. Для этого опустим перпендикуляры из точки A на ось x (точка B) и на ось игрек (точка C).
Отрезок OB является проекцией отрезка OA на ось x, отрезок OC является проекцией отрезка OA на ось y.
Рассмотрим прямоугольный треугольник AOB:
cos α = O B O A = O B 1 = O B
sin α = A B O A = A B 1 = A B
Поскольку O C A B – прямоугольник, A B = C O .
Итак, косинус угла – координата точки A по оси x (ось абсцисс), синус угла – координата точки A по оси y (ось ординат).
Давайте рассмотрим еще один случай, когда угол α – тупой, то есть больше 90 ° :
Опускаем из точки A перпендикуляры к осям x и y. Точка B в этом случае будет иметь отрицательную координату по оси x. Косинус тупого угла отрицательный.
Можно дальше крутить точку A по окружности, расположить ее в III или даже в IV четверти, но мы пока не будем этим заниматься, поскольку в курсе 9 класса рассматриваются углы от 0 ° до 180 ° . Поэтому мы будем использовать только ту часть окружности, которая лежит над осью x.
(Если вас интересует тригонометрия на полной окружности, смотрите видео на канале). Отметим на этой окружности углы 0 ° , 30 ° , 45 ° , 60 ° , 90 ° , 120 ° , 135 ° , 150 ° , 180 ° . Из каждой точки на окружности, соответствующей углу, опустим перпендикуляры на ось x и на ось y.
Координата по оси x – косинус угла, координата по оси y – синус угла.
Пример:
cos 150 ° = − 3 2
sin 150 ° = 1 2
Ещё одно замечание.
Синус тупого угла – положительная величина, а косинус – отрицательная.
Тангенс – это отношение синуса к косинусу. При делении положительной величины на отрицательную результат отрицательный. Тангенс тупого угла отрицательный.
Котангенс – отношение косинуса к синусу. При делении отрицательной величины на положительную результат отрицательный. Котангенс тупого угла отрицательный.
Основное тригонометрическое тождество
sin 2 α + cos 2 α = 1
Данное тождество – теорема Пифагора в прямоугольном треугольнике O A B :
A B 2 + O B 2 = O A 2
sin 2 α + cos 2 α = R 2
sin 2 α + cos 2 α = 1
Тригонометрия: Таблица значений тригонометрических функций
0° | 30° | 45° | 60° | 90° | |
sinα | 0 | 12 | 22 | 32 | 1 |
cosα | 1 | 32 | 22 | 12 | 0 |
tgα | 0 | 33 | 1 | 3 | нет |
ctgα | нет | 3 | 1 | 33 | 0 |
Тригонометрия: градусы и радианы
Как перевести градусы в радианы, а радианы в градусы? Как и когда возникла градусная мера угла? Что такое радианы и радианная мера угла? Ищите ответы в этом видео!
Тригонометрия: Формулы приведения
Тригонометрия на окружности имеет некоторые закономерности. Если внимательно рассмотреть данный рисунок,
можно заметить, что:
sin 180 ° = sin ( 180 ° − 0 ° ) = sin 0 °
sin 150 ° = sin ( 180 ° − 30 ° ) = sin 30 °
sin 135 ° = sin ( 180 ° − 45 ° ) = sin 45 °
sin 120 ° = sin ( 180 ° − 60 ° ) = sin 60 °
cos 180 ° = cos ( 180 ° − 0 ° ) = − cos 0 °
cos 150 ° = cos ( 180 ° − 30 ° ) = − cos 30 °
cos 135 ° = cos ( 180 ° − 45 ° ) = − cos 45 °
cos 120 ° = cos ( 180 ° − 60 ° ) = − cos 60 °
Рассмотрим тупой угол β:
Для произвольного тупого угла β = 180 ° − α всегда будут справедливы следующие равенства:
sin ( 180 ° − α ) = sin α
cos ( 180 ° − α ) = − cos α
tg ( 180 ° − α ) = − tg α
ctg ( 180 ° − α ) = − ctg α
Тригонометрия: Теорема синусов
В произвольном треугольнике стороны пропорциональны синусам противолежащих углов.
a sin ∠ A = b sin ∠ B = c sin ∠ C
Тригонометрия: Расширенная теорема синусов
Отношение стороны к синусу противолежащего угла равно двум радиусам описанной вокруг данного треугольника окружности.
a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R
Тригонометрия: Теорема косинусов
Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.
a 2 = b 2 + c 2 − 2 b c ⋅ cos ∠ A
b 2 = a 2 + c 2 − 2 a c ⋅ cos ∠ B
c 2 = a 2 + b 2 − 2 a b ⋅ cos ∠ C
Тригонометрия: Тригонометрические уравнения
Это тема 10-11 классов.
Из серии видео ниже вы узнаете, как решать простейшие тригонометрические уравнения, что такое обратные тригонометрические функции, зачем они нужны и как их использовать. Если вы поймёте эти базовые темы, то вскоре сможете без проблем решать любые тригонометрические уравнения любого уровня сложности!
Примеры решений заданий из ОГЭ
Модуль геометрия: задания, связанные с тригонометрией.
Скачать домашнее задание к уроку 1.
Источник: https://epmat.ru/modul-geometriya/urok-1-trigonometriya/
Простейшие тригонометрические уравнения
Справочник по математике | Тригонометрия |
Простейшими тригонометрическими уравнениями называют уравнения вида:
sin x = a , cos x = a ,
tg x = a , ctgx = a .
где a – произвольное число.
Решение уравнения sin x = a
Обычная формазаписи решения | |
Более удобная формазаписи решения | |
Ограниченияна число a | В случае, когда ,уравнение решений не имеет |
Обычная форма записи решения:
Более удобная форма записи решения:
Ограничения на число a:
В случае, когда , уравнение решений не имеет.
Графическое обоснование решения уравнения sin x = a представлено на рисунке 1
Рис. 1
Частные случаи решения уравнений sin x = a
Уравнение | Решение |
sin x = – 1 | |
sin x = 0 | |
sin x = 1 |
Уравнение:sin x = – 1Решение: |
Уравнение:Решение: |
Уравнение:Решение: |
Уравнение:Решение:> |
Уравнение:sin x = 0Решение: |
Уравнение:Решение: |
Уравнение:Решение: |
Уравнение:Решение: |
Уравнение:sin x = 1Решение: |
Решение уравнения cos x = a
Обычная формазаписи решения | |
Более удобная формазаписи решения | |
Ограниченияна число a | В случае, когда ,уравнение решений не имеет |
Обычная форма записи решения:
Более удобная форма записи решения:
Ограничения на число a
В случае, когда , уравнение решений не имеет.
Графическое обоснование решения уравнения cos x = a представлено на рисунке 2
Рис. 2
Частные случаи решения уравнений cos x = a
Уравнение | Решение |
cos x = – 1 | |
cos x = 0 | |
cos x = 1 |
Уравнение:cos x = – 1Решение: |
Уравнение:Решение: |
Уравнение:Решение: |
Уравнение:Решение: |
Уравнение:cos x = 0Решение: |
Уравнение:Решение: |
Уравнение:Решение: |
Уравнение:Решение: |
Уравнение:cos x = 1Решение: |
Решение уравнения tg x = a
Обычная формазаписи решения: | |
Более удобная формазаписи решения | |
Ограниченияна число a | Ограничений нет |
Обычная форма записи решения:
Более удобная форма записи решения:
Ограничения на число a:
Ограничений нет.
Графическое обоснование решения уравнения tg x = a представлено на рисунке 3.
Рис. 3
Частные случаи решения уравнений tg x = a
Уравнение | Решение |
tg x = – 1 | |
tg x = 0 | |
tg x = 1 |
Уравнение:Решение: |
Уравнение:tg x = – 1Решение: |
Уравнение:Решение: |
Уравнение:tg x = 0Решение: |
Уравнение:Решение: |
Уравнение:tg x = 1Решение: |
Уравнение:Решение: |
Решение уравнения ctg x = a
Обычная формазаписи решения | |
Более удобная формазаписи решения | |
Ограниченияна число a | Ограничений нет |
Обычная форма записи решения:
Более удобная форма записи решения:
Ограничения на число a:
Ограничений нет.
Графическое обоснование решения уравнения ctg x = a представлено на рисунке 4.
Рис. 4
Частные случаи решения уравнений ctg x = a
Уравнение | Решение |
ctg x = – 1 | |
ctg x = 0 | |
ctg x = 1 |
Уравнение:Решение: |
Уравнение:ctg x = – 1Решение: |
Уравнение:Решение: |
Уравнение:ctg x = 0Решение: |
Решение: |
Уравнение:ctg x = 1Решение: |
Уравнение:Решение: |
На нашем сайте можно также ознакомиться нашими учебными материалами для подготовки к ЕГЭ по математике.
Источник: https://www.resolventa.ru/spr/trig/equation.htm
Тригонометрические уравнения
Ну что, перечисляем обе серии (1) и (2) в ответе через запятую? Нет! Серия (2) является в данном случае частью серии (1). Действительно, если в формуле (1) число n кратно 5, то мы получаем все решения серии (2).
Поэтому ответ:
3.
Бывает, что перед разложением суммы или разности тригонометрических функций в произведение надо проделать обратную процедуру: превратить произведение в сумму (разность).
Решим уравнение:
Домножаем обе части на 2, преобразуем левую часть в разность косинусов, а правую часть — в сумму косинусов:
Ответ:
4. Ещё пример, где финальное разложение на множители поначалу замаскировано:
Здесь используем формулу понижения степени:
(которая является ни чем иным, как переписанной в другом виде формулой косинуса двойногоугла). Получаем:
и дальше ясно.
5. Многие оказываются в ступоре при виде следующего уравнения:
Переносим косинус влево и применяем формулу приведения
Дальше — дело техники.
6. А в этом примере нужны совсем другие манипуляции:
Раскладываем синус двойного угла, всё собираем в левой части и группируем:
Цель достигнута.
Рассмотрим уравнение:
Степень каждого слагаемого в левой части равна двум. Точно так же, как в обычном многочлене
степень каждого слагаемого равна двум (степень одночлена — это сумма степеней входящих в него сомножителей).
Поскольку степени всех слагаемых одинаковы, такое уравнение называют однородным. Для однородных уравнений существует стандартный приём решения — деление обеих его частей на .
Возможность этого деления, однако, должна быть обоснована: а что, если косинус равен нулю?
Следующий абзац предлагаем выучить наизусть и всегда прописывать его при решении однородных уравнений.
Предположим, что . Тогда в силу уравнения и , что противоречит основному тригонометрическому тождеству. Следовательно, любое решение данного уравнения удовлетворяет условию , и мы можем поделить обе его части на .
и дальнейший ход решения трудностей не представляет
1. Рассмотрим уравнение
Если бы в правой части стоял нуль, уравнение было бы однородным. Мы поправим ситуацию изящным приёмом: заменим число 3 на выражение :
и дело сделано.
2. Неожиданным образом сводится к однородному следующее уравнение:
Казалось бы, где тут однородность? Переходим к половинному углу!
откуда
(3) |
Мы не случайно довели это уравнение до ответа. В следующем разделе оно будет решено другим методом, и ответ окажется внешне непохожим на этот.
Введение дополнительного угла
Этот метод применяется для уравнений вида . Он присутствует в школьных учебниках. Правда, в них рассматриваются только частные случаи — когда числа a и b являются значениями синуса и косинуса углов в 30°, 45° или 60°.
1. Рассмотрим уравнение
Делим обе части на 2:
Замечаем, что :
В левой части получили синус суммы:
,
откуда и
2. Другой пример:
Делим обе части на
Сделаем теперь для разнообразия в левой части косинус разности:
3. Рассмотрим теперь общий случай — уравнение
Делим обе части на :
(4) |
Для чего мы выполнили это деление? Всё дело в получившихся коэффициентах при косинусе и синусе.
Легко видеть, что сумма их квадратов равна единице:
Это означает, что данные коэффициенты сами являются косинусом и синусом некоторого угла :
Соотношение (4) тогда приобретает вид:
,или
Исходное уравнение сведено к простейшему. Теперь понятно, почему рассматриваемый метод называется введением дополнительного угла. Этим дополнительным углом как раз и является угол .
4. Снова решим уравнение
Делим обе части на :
Существует угол такой, что . Например, . Получаем:
,
,
,
,
В предыдущем разделе мы решили это уравнение, сведя его к однородному, и получили в качестве ответа выражение (3). Сравните с полученным только что выражением. А ведь это одно и то же множество решений!
Универсальная подстановка
Запомним две важные формулы:
Их ценность в том, что они позволяют выразить синус и косинус через одну и ту же функцию — тангенс половинного угла. Именно поэтому они получили название универсальной подстановки.
Единственная неприятность, о которой не надо забывать: правые части этих формул не определены при . Поэтому если применение универсальной подстановки приводит к сужению ОДЗ, то данную серию нужно проверить непосредственно.
1. Решим уравнение
Выражаем , используя универсальную подстановку:
Делаем замену :
Получаем кубическое уравнение:
Оно имеет единственный корень . Стало быть, , откуда .
Сужения ОДЗ в данном случае не было, так как уравнение с самого начала содержало .
2. Рассмотрим уравнение
А вот здесь использование универсальной подстановки сужает ОДЗ. Поэтому сначала непосредственно подставляем в уравнение и убеждаемся, что это — решение.
Теперь обозначаем и применяем универсальную подстановку:
После простых алгебраических преобразований приходим к уравнению:
Следовательно, и .
Ответ: .
Метод оценок
В некоторых уравнениях на помощь приходят оценки .
3.
Рассмотрим уравнение
Так как оба синуса не превосходят единицы, данное равенство может быть выполнено лишь в
том случае, когда они равны единице одновременно:
Таким образом, должны одновременно выполняться следующие равенства:
Обратите внимание, что сейчас речь идёт о пересечении множества решений (а не об их объединении, как это было в случае разложения на множители). Нам ещё предстоит понять, какие значения x удовлетворяют обоим равенствам. Имеем:
Умножаем обе части на 90 и сокращаем на π:
Правая часть, как видим, должна делиться на 5. Число n при делении на 5 может давать остатки от 0 до 4; иначе говоря, число n может иметь один из следующих пяти видов: 5n, 5m + 1, 5m + 2, 5m + 3 и 5m + 4, где. Для того, чтобы 9n+ 1 делилось на 5, годится лишь n = 5m + 1.
Искать k, в принципе, уже не нужно. Сразу находим x:
Ответ: .
4. Рассмотрим уравнение
Ясно, что данное равенство может выполняться лишь в двух случаях: когда оба синуса одновременно равны 1 или −1. Действуя так, мы должны были бы поочерёдно рассмотреть две системы уравнений.
Лучше поступить по-другому: умножим обе части на 2 и преобразуем левую часть в разность косинусов:
Тем самым мы сокращаем работу вдвое, получая лишь одну систему:
Имеем:
Ищем пересечение:
Умножаем на 21 и сокращаем на π:
Данное равенство невозможно, так как в левой части стоит чётное число, а в правой — нечётное.Ответ: решений нет.
5. Страшное с виду уравнение
также решается методом оценок. В самом деле, из неравенств следует, что . Следовательно, , причём равенство возможно в том и только в том случае, когда
Остаётся решить полученную систему. Это не сложно.
Учёт тригонометрических неравенств
Рассмотрим уравнение:
Перепишем его в виде, пригодном для возведения в квадрат:
Тогда наше уравнение равносильно системе:
Решаем уравнение системы:
,
,
Второе уравнение данной совокупности не имеет решений, а первое даёт две серии:
Теперь нужно произвести отбор решений в соответствии с неравенством . Серия не удовлетворяет этому неравенству, а серия удовлетворяет ему. Следовательно, решением исходного уравнения служит только серия .
Ответ: .
Специальные приёмы
В этом разделе рассматриваются некоторые типы уравнений, приёмы решения которых нужно знать обязательно.
1. Рассмотрим уравнение
Это сравнительно редкий случай, когда используется исходная формула косинуса двойного угла:
,
,
,
Каждое из уравнений полученной совокупности мы решать умеем.
2. Теперь рассмотрим такое уравнение:
Метод решения будет совсем другим. Сделаем замену . Как выразить через t? Имеем:
,
откуда . Получаем:
,
,
,
Как действовать дальше, мы знаем.
3.
Надо обязательно помнить формулы косинуса и синуса тройного угла (чтобы не изобретать их на экзамене):
,
Вот, например, уравнение:
Оно сводится к уравнению относительно :
,
,
Дальше всё понятно.
4. Как бороться с суммой четвёртых степеней синуса и косинуса? Рассмотрим уравнение
Выделяем полный квадрат!
,
,
,
,
,
,
5. А как быть с суммой шестых степеней? Рассмотрим такое уравнение:
Раскладываем левую часть на множители как сумму кубов: .Получим:
,
С суммой четвёртых степеней вы уже умеете обращаться.
Мы рассмотрели основные методы решения тригонометрических уравнений. Знать их нужно обязательно, это — необходимая база.
В более сложных и нестандартных задачах нужно ещё догадаться, как использовать те или иные методы. Это приходит только с опытом. Именно этому мы и учим на наших занятиях.
Источник: https://ege-study.ru/ru/ege/materialy/matematika/trigonometricheskie-uravneniya/