Спитры

Содержание
  1. Спирты — понятие, свойства, применение
  2. История открытия
  3. Классификация
  4. Свойства
  5. Применение
  6. Бутиловый спирт
  7. Фурфуриловый спирт
  8. Изопропиловый спирт (пропанол-2)
  9. Этиленгликоль
  10. Глицерин
  11. Маннит
  12. То, что нужно знать о Спиртах
  13. 2. Щелочной гидролиз галагеналканов
  14. 3. Восстановление карбонильных соединений (альдегидов)
  15. 5. Этанол можно получить ферментативным брожением углеводов
  16. 1. Взаимодействие со щелочными и щелочноземельными металлами
  17. 2. Взаимодействие спиртов с кислотами (этерификация)
  18. 3. Взаимодействие с галогенводородами
  19. 4. Взаимодействие с альдегидами
  20. 5. Дегидратация
  21. 6. Взаимодействие с аммиаком
  22. 7. Окисление спиртов оксидом меди (II)
  23. 8. Окисление перманганатом калия в кислой среде
  24. 9. Окисление бихроматом калия в кислой среде
  25. 10. Окисление многоатомных спиртов свежеполученным осадком гидроксида меди (II)
  26. 11. Взаимодействие с кислородом (горение)
  27. Спирты
  28. Классификация спиртов
  29. Номенклатура и изомерия спиртов
  30. Получение спиртов
  31. Химические свойства спиртов
  32. Изомерия и номенклатура
  33. Электронное строение
  34. Физические свойства
  35. Химические свойства
  36. Способы получения алканолов
  37. Предельные многоатомные спирты
  38. I. Замещение атомов водорода гидроксильных групп
  39. Способы получения глицерина
  40. 2. Синтез из пропилена
  41. Применение важнейших спиртов
  42. Скачать:
  43. Спирты: их номенклатура, физические и химические свойства
  44. История открытия спирта
  45. Номенклатура спиртов
  46. Физические свойства спиртов
  47. Применение спиртов
  48. Спирты, видео
  49. Спирты — номенклатура, получение, химические свойства
  50.    Номенклатура и изомерия спиртов
  51. Физические свойства спиртов
  52. Химические свойства спиртов

Спирты — понятие, свойства, применение

Спитры

  • Спирты — сложные органические соединения, углеводороды, обязательно содержащие один или несколько гидроксилов (групп ОН—), связанных с углеводородным радикалом.

    История открытия

    По мнению историков, уже за 8 веков до нашей эры человек употреблял напитки, содержащие этиловый спирт. Их получали методом сбраживания фруктов или меда. В чистом виде этанол был выделен из вина арабами примерно в VI-VII веках, а европейцами — на пять столетий позже. В XVII веке перегонкой древесины был получен метанол, а в XIX веке химики установили, что спирты — это целая категория органических веществ.

    Классификация

    — По количеству гидроксилов спирты делят на одно-, двух-, трех-, многоатомные. Например, одноатомный этанол; трехатомный глицерин.— По тому, с каким числом радикалов связан атом углерода, соединенный с группой ОН—, спирты разделяют на первичные, вторичные, третичные.— По характеру связей радикала спирты бывают предельными, непредельными, ароматическими. В ароматических спиртах гидроксил связан не напрямую с бензольным кольцом, а через другой (другие) радикалы.— Соединения, в которых ОН— прямо связана с бензольным циклом, считаются отдельным классом фенолов.

Свойства

В зависимости от того, сколько в молекуле углеводородных радикалов, спирты могут быть жидкими, вязкими, твердыми. Водорастворимость уменьшается с ростом количества радикалов.

Простейшие спирты смешиваются с водой в любых пропорциях. Если же в молекулу входит более 9 радикалов, то вообще не растворяются в воде. Все спирты хорошо растворяются в органических растворителях. — Спирты горят, выделяя большое количество энергии.

— Вступают в реакции с металлами, в результате чего получаются соли — алкоголяты. — Взаимодействуют с основаниями, проявляя качества слабых кислот.— Реагируют с кислотами и ангидридами, проявляя оснóвные свойства. Результатом реакций являются сложные эфиры.

— Воздействие сильными окислителями приводит к образованию альдегидов или кетонов (в зависимости от вида спирта).

— При определенных условиях из спиртов получают простые эфиры, алкены (соединения с двойной связью), галогенуглеводороды, амины (производные от аммиака углеводороды).

Спирты токсичны для человеческого организма, некоторые — ядовиты (метилен, этиленгликоль). Этилен оказывает наркотическое воздействие. Опасны и пары спиртов, поэтому работы с растворителями на основе спирта должны производиться с соблюдением техники безопасности.

Тем не менее, спирты участвуют в естественном метаболизме растений, животных и человека. К категории спиртов относятся такие жизненно важные вещества как витамины A и D, стероидные гормоны эстрадиол и кортизол. Более половины липидов, поставляющих энергию нашему организму, имеют в своей основе глицерин.

Применение

— В органическом синтезе.— Биотопливо, добавки в топливо, ингредиент тормозной жидкости, гидравлических жидкостей.— Растворители.— Сырье для производства ПАВ, полимеров, пестицидов, антифризов, взрывчатых и отравляющих веществ, бытовой химии.— Душистые вещества для парфюмерии. Входят в состав косметических и медицинских средств.

— Основа алкогольных напитков, растворитель для эссенций; сахарозаменитель (маннит и т.п.); краситель (лютеин), ароматизатор (ментол).

Бутиловый спирт

Одноатомный спирт. Применяется в качестве растворителя; пластификатора при изготовлении полимеров; модификатора формальдегидных смол; сырья для органического синтеза и получения душистых веществ для парфюмерии; добавки к топливу.

Фурфуриловый спирт

Одноатомный спирт. Востребован для полимеризации смол и пластиков, как растворитель и пленкообразователь в лакокрасочной продукции; сырье для органического синтеза; связующий и уплотняющий агент при производстве полимербетона.

Изопропиловый спирт (пропанол-2)

Вторичный одноатомный спирт. Активно используется в медицине, металлургии, химпроме. Заменитель этанола в парфюмерных, косметических, дезинфицирующих продуктах, средствах бытовой химии, антифризах, очистителях.

Этиленгликоль

Двухатомный спирт. Применяется при производстве полимеров; красок для типографий и текстильного производства; входит в состав антифризов, тормозных жидкостей, теплоносителей. Используется для осушения газов; как сырье для органического синтеза; растворитель; средство для криогенной «заморозки» живых организмов.

Глицерин

Трехатомный спирт. Востребован в косметологии, пищепроме, медицине, как сырье в орг. синтезе; для изготовления взрывчатого вещества нитроглицерина. Применяется в сельском хозяйстве, электротехнике, текстильной, бумажной, кожевенной, табачной, лакокрасочной индустрии, в производстве пластиков и средств бытовой химии.

Маннит

Шестиатомный (многоатомный) спирт. Применяется как пищевая добавка; сырье для изготовления лаков, красок, олиф, смол; входит в состав ПАВ, парфюмерных продуктов.

Источник: https://pcgroup.ru/blog/spirty-ponyatie-svojstva-primenenie/

То, что нужно знать о Спиртах

Спитры

Здравствуйте дорогие подписчики и гости моего канала. Сегодня вас ждет статья, посвященная такому классу органических соединений, как спирты. Это весьма обширный класс веществ, часто встречающийся, как в окружающем мире, так и в тестах ЕГЭ.

В этой статье я постараюсь обобщить различные элементы школьной программы относительно данной группы веществ, чтобы помочь тем, кто сдает экзамен или просто удовлетворить интерес тех, кто решил ознакомиться с современной школьной программой профильного уровня.

Начнем с определения!

Спирты – это органические вещества, молекулы которых содержат одну или несколько гидроксильных групп (-OH), соединённых с углеводородным радикалом.

В зависимости от числа гидроксогрупп, в молекуле спирта, представителей данного класса органических соединений делят на:

Одноатомные спирты (алканолы) – это органические соединения в которых углеводородный радикал связан с одной группой –OH.

Общая формула предельных одноатомных спиртов:

CnH2n+1-OH

Двухатомные спирты (гликоли или диолы) – это органические соединения в которых две гидроксильные группы связаны с углеводородным радикалом.

Общая формула двухатомных спиртов:

CnH2n(OH)2

Гомологический ряд двухатомных спиртов (гликолей), может быть представлен так:

Трехатомный спирты (алкантриолы) – это органические вещества, содержащие в своем составе три гидроксильные группы, связанные с углеводородным радикалом.

К таким соединениям относится например глицерин:

Если в молекуле спирта содержится более трех гидроксильных групп, его относят к полиатомным спиртам, например шестиатомный спирт сорбит:

По характеру углеводородного радикала выделяют следующие спирты:

Предельные спирты, содержащие в молекуле лишь насыщенный углеводородный радикал, например:

CH3-OH метанол

CH3-CH2-OH этанол

CH3-CH2-CH2-OH пропанол

Непредельные спирты, содержащие в молекуле кратные (двойные или тройные) связи, между атомами углерода.

H2C=CH-OH виниловый спирт

CH2=CH-CH2-OH пропен-2-ол-1

Ароматические спирты, содержащие в молекуле бензольное кольцо и гидроксогруппу, связанные друг с другом не на прямую, а через атомы углерода, например:

Так же не забываем, что по характеру углерода с которым соединена -OH группа, одноатомные спирты делят на:

Уже первые члены гомологического ряда предельных одноатомных спиртов, несмотря на небольшие значения относительных молекулярных масс, представляют собой жидкости. Это объясняется образованием между молекулами особой химической водородной связи.

Водородная связь – это межмолекулярная связь между атомом водорода одной молекулы и атомом сильного электроотрицательного элемента (например фтора, кислорода, азота) другой молекулы.

За счет водородной связи молекулы простейших спиртов ассоциированы в жидкости:

Поговорим подробнее о некоторых конкретных представителях класса спиртов:

Метанол (метиловый спирт или древесный спирт) – это бесцветная жидкость, со специфическим запахом, ядовит (при приеме внутрь вызывает слепоту и негативно воздействует на нервную и сердечно – сосудистую систему). Однако, несмотря на это метанол находит широкое применение:

  • Он является отличным растворителем многих веществ.
  • Применяется для синтеза формальдегида и формалина.
  • Используется для синтеза некоторых эфиров.
  • Применяется как добавка к моторному топливу.
  • Используется при производстве красок.

Этанол (Этиловый спирт) – бесцветная прозрачная жидкость, со специфическим запахом, летучая и горючая. Является депрессантом – психоактивным веществом, угнетающим ЦНС человека. Применение:

  • Широко применяется как растворитель.
  • Входит в состав моющих средств, для стекол и сантехники.
  • Служит сырьем для получения многих химических веществ, таких как: ацетальдегид, диэтиловый эфир, уксусная кислота, этилацетат, этилен и др..
  • Используется для приготовления различных напитков в алкогольной промышленности.
  • Является наполнителем в спиртовых термометрах.
  • В медицине применяется как дезинфицирующее средство.

Этиленгликоль – это прозрачная, бесцветная жидкость, слегка маслянистой консистенции. Не имеет запаха. Токсичен! Попадание его в организм, может привести к необратимым последствиям и смерти. Применение:

  • В качестве растворителя красящих веществ.
  • При производстве автомобильных антифризов (низкозамерзающих жидкостей).
  • При производстве целлофана.
  • В производстве синтетических волокон.
  • Может входить в состав средств, для мытья окон.

Глицерин – представляет собой густую и прозрачную жидкость, маслянистой консистенции. Не ядовит. Неограниченно растворим в воде, более того, очень гигроскопичен (если оставить глицерин в открытом сосуде, его масса может увеличиться до 40%, за счет поглощённой влаги из воздуха). Применение:

  • Широко используется в косметической промышленности, в составе кремов, гелей, помад и т.д.
  • В кожевенной промышленности (используется для защиты кожи от высыхания).
  • Используется как пищевая добавка (E422) в пищевой промышленности.
  • В пиротехники, глицерин используется для производства взрывчатого вещества – нитроглицерина.
  • В медицине, как сосудорасширяющее средство.

2. Щелочной гидролиз галагеналканов

Например:

Или:

Однако, не путайте взаимодействие хлоралканов с водным и спиртовым раствором щелочи, так как во втором случае произойдет дегидрогалогенирование, то есть отщепление атомов водорода и галогена, от галогеналкана:

3. Восстановление карбонильных соединений (альдегидов)

Альдегиды – это класс органических веществ, чье название происходит от латинских слов «alcohol dehydrogenatus», что означает «спирт лишенный водорода» или «алкоголь дегидрированый». Таким образом, при гидрирование или восстановление альдегидов, мы получаем спирты.

При гидрирование родственных альдегидам соединений, кетонов, можно получить двухатомные спирты:

5. Этанол можно получить ферментативным брожением углеводов

Это очень древняя химическая реакция, которая известна людям с незапамятных времен.

1. Взаимодействие со щелочными и щелочноземельными металлами

Водород гидроксильной группы спиртов способен восстанавливаться щелочными и щелочноземельными металлами (такими как Li, Na, K, Ca, Sr, Ba).

В результате подобных химических реакций получаются соли – алкоголяты. При этом соли метанола, носят название – метилаты, этанола – этилаты и т.д.

Важно не забывать, что алкоголяты, как соли очень слабой кислоты и сильного основания могут быть полностью гидролизованы водой.

С водными растворами щелочей спирты не взаимодействуют.

2. Взаимодействие спиртов с кислотами (этерификация)

– Возможно взаимодействие спиртов с органическими кислотами, приводящие к образованию сложных эфиров.

– Так же возможно взаимодействие спиртов с неорганическими кислотами.

Реакция с азотной кислотой будет протекать по схеме:

3. Взаимодействие с галогенводородами

При этом происходит замещение гидроксильной группы на галоген, что ведет к образованию галогеналканов.

4. Взаимодействие с альдегидами

В данном случае не обязательно запоминать то, как записывается данная реакция. Но о возможности протекания такой реакции, забывать, ни в коем случае, не стоит.

5. Дегидратация

В зависимости от условий возможны два варианта протекания данной реакции.

6. Взаимодействие с аммиаком

Эта реакция крайне важна, так лежит в основе промышленного способа получения некоторых аминов.

7. Окисление спиртов оксидом меди (II)

При этом первичные спирты окисляются до альдегидов, а вторичные до кетонов:

Третичные спирты оксидом меди (II) не окисляются.

8. Окисление перманганатом калия в кислой среде

При этом, происходит полное окисление спирта до карбоновой кислоты:

5C2H5OH + 4KMnO4 + 6H2SO4 = 5CH3COOH + 11H2O + 2K2SO4 + 4MnSO

Вторичные спирты при такой реакции окисляются до кетонов:

5CH3- CH(OH)- CH3 +2KMnO4+3H2SO4=5 CH3-C(O)- CH3 +K2SO4+2MnSO4+8H20

Метанол окисляется до углекислого газа и воды:

CH3OH + KMnO4 + H2SO4 = CO2 + MnSO4 + K2SO4 + H2O.

9. Окисление бихроматом калия в кислой среде

Так как бихромат калия более мягкий окислитель, чем перманганат калия, окисление первичных спиртов в нем идет до альдегидов.

3C2H5OH + K2Cr2O7 + 4H2SO4 → Cr2(SO4)3 + 3CH3CHO + K2SO4 + 7H2O

10. Окисление многоатомных спиртов свежеполученным осадком гидроксида меди (II)

Это качественная реакция сопровождающаяся образованием ярко – синего растворимого в воде комплекса.

11. Взаимодействие с кислородом (горение)

Как и при горение большинства органических веществ, в результате реакции выделяется углекислый газ и вода:

C2H5OH + 3O2 → 2CO2 + 3H2O

Вот собственно и все, что необходимо знать о спиртах, для удачной сдачи экзаменов! Конечно во второй части теста ЕГЭ возможно встретится и с более экзотическими реакциями, но такой шанс не велик.

До новых встреч!

Источник: https://zen.yandex.ru/media/istin_om/to-chto-nujno-znat-o-spirtah-5e88518996544a69b3c56573

Спирты

Спитры

Спирты – кислородсодержащие органические соединения, функциональной группой которых является гидроксогруппа (OH) у насыщенного атома углерода.

Спирты также называют алкоголи. Первый член гомологического ряда – метанол – CH3OH. Общая формула их гомологического ряда – CnH2n+1OH.

Классификация спиртов

По числу OH групп спирты бывают одноатомными (1 группа OH), двухатомными (2 группы OH – гликоли), трехатомными (3 группы OH – глицерины) и т.д.

Одноатомные спирты также подразделяются в зависимости от положения OH-группы: первичные (OH-группа у первичного атома углерода), вторичные (OH-группа у вторичного атома углерода) и третичные (OH-группа у третичного атома углерода).

Номенклатура и изомерия спиртов

Названия спиртов формируются путем добавления суффикса “ол” к названию алкана с соответствующим числом атомов углерода: метанол, этанол, пропанол, бутанол, пентанол и т.д.

Для спиртов характерна изомерия углеродного скелета (начиная с бутанола), положения функциональной группы и межклассовая изомерия с простыми эфирами, которых мы также коснемся в данной статье.

Получение спиртов

  • Гидролиз галогеналканов водным раствором щелочи
  • Помните, что в реакциях галогеналканов со сПиртовым раствором щелочи получаются Пи-связи (π-связи) – алкены, а в реакциях с водным раствором щелочи образуются спирты.

  • Гидратация алкенов
  • Присоединения молекулы воды (HOH) протекает по правилу Марковникова. Атом водорода направляется к наиболее гидрированному атому углерода, а гидроксогруппа идет к соседнему, наименее гидрированному, атому углерода.

  • Восстановление карбонильных соединений
  • В результате восстановления альдегидов и кетонов получаются соответственно первичные и вторичные спирты.

  • Получение метанола из синтез-газа
  • Синтез газом в промышленности называют смесь угарного газа и водорода, которая используется для синтеза различных химических соединений, в том числе и метанола.CO + 2H2 → (t,p,кат.) CH3-OH

  • Получение этанола брожением глюкозы
  • В ходе брожения глюкозы выделяется углекислый газ и образуется этанол.

  • Окисление алкенов KMnO4 в нейтральной (водной) среде
  • В результате такой реакции у атомов углерода, прилежащих к двойной связи, формируются гидроксогруппы – образуется двухатомный спирт (гликоль).

Химические свойства спиртов

Предельные спирты (не содержащие двойных и тройных связей) не вступают в реакции присоединения, это насыщенные кислородсодержащие соединения. У спиртов проявляются новые свойства, которых мы раньше не касались в органической химии – кислотные.

  • Кислотные свойства
  • Щелочные металлы (Li, Na, K) способны вытеснять водород из спиртов с образованием солей: метилатов, этилатов, пропилатов и т.д.Необходимо особо заметить, что реакция с щелочами (NaOH, KOH, LiOH) для предельных одноатомных спиртов невозможна, так как образующиеся алкоголяты (соли спиртов) сразу же подвергаются гидролизу.

  • Реакция с галогеноводородами
  • Реакция с галогеноводородами протекают как реакции обмена: атом галогена замещает гидроксогруппу, образуется молекула воды.

  • Реакции с кислотами
  • В результате реакций спиртов с кислотами образуются различные эфиры.

  • Дегидратация спиртов
  • Дегидратация спиртов (отщепление воды) идет при повышенной температуре в присутствии серной кислоты (водоотнимающего) компонента.Возможен межмолекулярный механизм дегидратации (при t < 140°С), в результате которого образуются простые эфиры. При более высокой температуре (t > 140°С) механизм дегидратации становится внутримолекулярный – образуются алкены.Названия простых эфиров формируются проще простого – по названию радикалов, входящих в состав эфира. Например:

    • Диметиловый эфир – CH3-O-CH3
    • Метилэтиловый эфир – CH3-O-C2H5
    • Диэтиловый эфир – C2H5-O-C2H5
  • Окисление спиртов
  • Качественной реакцией на спирты является взаимодействие с оксидом меди II. В ходе такой реакции раствор приобретает характерное фиолетовое окрашивание.

    Замечу, что в обычных условиях третичные спирты окислению не подвергаются. Для них необходимы очень жесткие условия, при которых углеродный скелет подвергается деструкции.

    Вторичные и третичные спирты определяются другой качественной реакцией с хлоридом цинка II и соляной кислотой. В результате такой реакции выпадает маслянистый осадок.

    Первичные спирты окисляются до альдегидов, а вторичные – до кетонов. Альдегиды могут быть окислены далее – до карбоновых кислот, в отличие от кетонов, которые являются “тупиковой ветвью развития” и могут только снова стать вторичными спиртами.

  • Качественная реакция на многоатомные спирты
  • Такой реакцией является взаимодействие многоатомного спирта со свежеприготовленным гидроксидом меди II. В результате реакции раствор окрашивается в характерный синий цвет.

  • Кислотные свойства многоатомных спиртов
  • Важным отличием многоатомных спиртов от одноатомных является их способность реагировать со щелочами (что невозможно для одноатомных спиртов). Это говорит об их более выраженных кислотных свойствах.

Источник: https://studarium.ru/article/187

Изомерия и номенклатура

Первые два члена гомологического ряда – СН3ОН и С2Н5ОН – не имеют изомеров, относящихся к классу спиртов. Для остальных алканолов возможны 2 типа изомерии (в пределах своего класса):

— изомерия цепи (углеродного скелета);

— изомерия положения функциональной группы – ОН.

Спирты изомерны другому классу соединений – простым эфирам (R-O-R):

Электронное строение

Атомы углерода в алканолах находятся в состоянии sp3 -гибридизации. Молекулы алканолов представляют собой диполи. Они содержат полярные связи С—Н, С—О, О—Н.

Дипольные моменты связей С → О и О ←Н направлены в сторону атома кислорода, поэтому атом «О» имеет частичный отрицательный заряд δ—, а атомы «С» и «Н» — частичные положительные заряды δ+.

Полярность связи О—Н больше полярности связи С—О вследствие большей разности электроотрицательностей кислорода и водорода. Однако полярность и этой связи недостаточна для диссоциации ее с образованием ионов Н+. Поэтому спирты являются неэлектролитами.

Физические свойства

Полярность связи О—Н и наличие неподеленных пар электронов на атоме кислорода определяют физические свойства спиртов.

Температуры кипения спиртов больше температуры кипения соответствующих алканов с тем же числом атомов углерода. Это объясняется ассоциацией молекул спиртов вследствие образования межмолекулярных водородных связей.

Водородная связь — это особый вид связи, которая осуществляется при участии атома водорода гидроксильной или аминогруппы одной молекулы и атомами с большой электроотрицательностъю (О, N, F, Сl) другой молекулы. Чем большим положительным зарядом обладает атом водорода и чем больше способность другого атома отдавать свои неподеленные электронные пары, тем легче образуется водородная связь (ВС) и тем она прочнее.

Все алканолы легче воды, бесцветны, жидкие имеют резкий запах, твердые запаха не имеют. Метанол, этанол и пропанол неограниченно растворяются в воде, с увеличением числа углеродных атомов растворимость алканолов в воде уменьшается, высшие спирты не растворяются в воде.

Химические свойства

Химические свойства алканолов определяются особенностями их электронного строения: наличием в их молекулах полярных связей О-Н, С-О, С-Н. Для алканолов характерны реакции, которые идут с расщеплением этих связей: реакции замещения, отщепления, окисления.

I.Реакции замещения

1. Замещение атома водорода гидроксильной группы вследствие разрыва связи О-Н.

а) Взаимодействие с активными металлами с образованием алкоголятов металлов:

2C2H5O[H + 2Na → 2C2H5ONa + H2↑

Эти реакции протекают только в безводной среде; в присутствии воды алкоголяты полностью гидролизуются:

C2H5ONa + H2O → C2H5OH + NaOH

б) Взаимодействие с органическими и неорганическими кислотами с образованием сложных эфиров (реакции этерификации):

2. Замещение гидроксильной группы вследствие разрыва связи С-О.

а) Взаимодействие с галогеноводородами с образованием галогеналканов:

Следует отметить, что спирты можно превратить в галогенпроизводные действием и других реагентов, например хлоридов фосфора:

R – OH + PCl5 → R – Cl + POCl3 + HCl

б) Взаимодействие с аммиаком с образованием аминов.

Реакции идут при пропускании смеси паров спирта с аммиаком при 300oС над оксидом алюминия:

При избытке спирта алкильными радикалами могут замещаться 2 или 3 атома водорода в молекуле NН3:

II. Реакции отщепления

1.Дегидратация, т.е. отщепление воды

Дегидратация спиртов может быть двух типов: межмолектлярная и внутримолекулярная.

а) Межмолекулярная дегидратация спиртов с образованием простых эфиров R—O—R’. Эти реакции могут протекать с участием одного спирта или смеси двух и более спиртов:

б) Внутримолекулярная дегидратация спиртов с образованием алкенов. Протекает при более высокой температуре. В отличие от межмолекулярной дегидратации в процессе этих реакций происходит отщепление молекулы воды от одной молекулы спирта:

Первый член гомологического ряда алканолов – метанол СН3ОН – не вступает в реакции внутримолекулярной дегидратации.

Дегидратация вторичных и третичных спиртов происходит по правилу Зайцева:

2.Дегидрирование (разрыв связей О – Н и С – Н)

а) При дегидрировании первичных спиртов образуются альдегиды:

В организме человека этот процесс происходит под действием фермента (алкогольдегидрогеназы).

б) При дегидрировании вторичных спиртов образуются кетоны:

в) Третичные спирты не дегидрируются.

III. Реакции окисления

1.Горение (полное окисление)

Спирты горят на воздухе с выделением большого количества тепла:

С2Н5ОН + 3О2 → 2СО2 + 3Н2О

2.Неполное окисление под действием окислителей: кислорода воздуха в присутствии катализаторов (например, Cu), перманганата калия, дихромата калия и др.

Реакции неполного окисления спиртов по своим результатам аналогичны реакциям дегидрирования:

Способы получения алканолов

1.Гидратация алкенов

H2C=CH2 + H2O → CH3 – CH2OH

Кроме прямой гидратации этилена, существует также сернокислотная гидратация, протекающая в две стадии:

— на первой стадии этилен поглощается серной кислотой:

Н2С=СН2 + Н2SO4 → CH3 – CH2 – OSO3H,

— на второй стадии этилсерная кислота гидролизуется с образованием этилового спирта и серной кислоты:

CH3 – CH2 – OSO3H + H2O → CH3 – CH2 – OH + H2SO4

При гидратации гомологов этилена в соответствии с правилом Марковникова образуются вторичные или третичные спирты:

2.Гидролиз галогеналканов

При действии водного раствора NaOH атом галогена в галогеналкане замещается группой —ОН:

C2H5Cl + NaOH → C2H5OH + NaCl

Обратите внимание, что при действии спиртового раствора щелочи на галогеналканы происходит отщепление галогеноводорода и образование алкена (см. способы получения алкенов).

3. Гидрирование альдегидов и кетонов

Как уже было отмечено выше, дегидрирование спиртов по своей химической сущности является окислением. Обратная реакция — гидрирование альдегидов и кетонов — является, таким образом, их восстановлением.

В присутствии катализаторов (Ni, Pt, Pd, Со) альдегиды восстанавливаются до первичных спиртов, а кетоны — до вторичных спиртов:

4.Специфические методы получения метанола и этанола

СО + 2Н2 → СН3ОН

Этанол образуется при брожении (ферментации) углеводов – глюкозы или крахмала:

С6Н12О6 → 2С2Н5ОН + 2СО2

Предельные многоатомные спирты

Свойства многоатомных спиртов рассмотрим на примере простейшего трехатомного спирта – глицерина, или пропантриола-1,2,3:

I. Замещение атомов водорода гидроксильных групп

1.Как и одноатомные спирты, многоатомные спирты взаимодействуют со щелочными металлами; при этом могут образовываться моно-, ди- и тризамещенные продукты:

2.Наличие нескольких ОН-групп в молекулах многоатомных спиртов обусловливает увеличение подвижности и способности к замещению гидроксильных атомов водорода по сравнению с одноатомными спиртами.

Поэтому, в отличие от алканолов, многоатомные спирты взаимодействуют с гидроксидами тяжелых металлов (например, с гидроксидом меди (II) Cu(OH)2.

Продуктами этих реакций являются внутрикомплексные («хелатные») соединения, в молекулах которых атом тяжелого металла образует как обычные ковалентные связи Ме←О за счет замещения атомов водорода ОН-групп, так и донорно-акцепторные связи Ме ←О за счет неподеленных электронных пар атомов кислорода других ОН-групп:

Нерастворимый в воде Cu(OH)2 голубого цвета растворяется в глицерине с образованием ярко-синего раствора глицерата меди (II). Эта реакция является качественной реакцией на все многоатомные спирты.

3.Многоатомные спирты, как и одноатомные, взаимодействуют с органическими и неорганическими кислотами с образованием сложных эфиров:

II. Замещение гидроксильных групп

Наиболее известными реакциями этого типа является взаимодействие многоатомных спиртов с галогеноводородами. Например, при взаимодействии глицерина с хлороводородом ОН-группы последовательно замещаются атомами хлора:

Способы получения глицерина

1.Гидролиз жиров – основной способ получения глицерина:

2. Синтез из пропилена

В последнее время глицерин получают из пропилена. Существует несколько вариантов этого синтеза. По одному из них пропилен хлорируют при to = 440—500оС, полученный аллилхлорид гидролизуют раствором NaOH.

На полученный в результате гидролиза аллиловый спирт действуют пероксидом водорода Н2О2, который в присутствии катализатора присоединяется к спирту по двойной связи с образованием глицерина.

Весь процесс можно представить схемой:

Применение важнейших спиртов

В медицине С2Н5ОН применяется как дезинфицирующее средство и средство для компрессов, используется для приготовления экстрактов и настоек, как растворитель для многих лекарственных препаратов.

Скачать:

Скачать бесплатно реферат на тему: «Спирты» Спирты.docx (64 Загрузки)

Скачать бесплатно реферат на тему: «Синтез этилового спирта»  Синтез-этилового-спирта.docx (52 Загрузки)

Скачать бесплатно реферат на тему: «Синтез метанола из оксида углерода и водорода»  Синтез-метанола-из-оксида-углерода-и-водорода.docx (58 Загрузок)

Скачать рефераты по другим темам можно здесь

Источник: https://al-himik.ru/spirty/

Спирты: их номенклатура, физические и химические свойства

Спитры

  • История открытия спирта
  • Классификация спиртов
  • Номенклатура спиртов
  • Физические свойства спиртов
  • Химические свойства спиртов
  • Получение спиртов
  • Применение спиртов
  • Спирты, видео
  • Слово «спирт» знакомо всем, но далеко не все знают, что на латыни оно происходит от слова «Дух» – «Spiritus». Такое необычное и немного пафосное название дали спирту его первооткрыватели, алхимик Жа-бир и александриец Зосим де Панополис, работающие при дворе египетского халифа. Именно им впервые удалось выделить спирт из вина при помощи дистилляционного аппарата. Эти ученые древности свято верили, что им удалось получить сам дух вина. С тех пор многие ученые (сперва алхимики, а потом и просто химики) разных исторических эпох занимались изучением спирта и его физических и химических свойств. Так что в наше время спирты занимают видное и важное место в органической химии, и о них наша сегодняшняя статья.

    Спирты являются важными органическими и кислородосодержащими соединениями, которые содержат гидроксильную группу OH. Также все спирты делятся на одноатомные и многоатомные.

    Значение спиртов в химии, да и не только в ней просто таки огромно, спирты активно применяются в химической, косметической и пищевой промышленности (да-да, и для создания алкогольных напитков в том числе, но и далеко не только для них).

    История открытия спирта

    История спирта уходят корнями в глубокую древность, ведь согласно археологическим находкам уже 5000 лет тому назад люди умели делать алкогольные напитки: вино и пиво.

    Делать то умели, но не до конца понимали, какой же такой волшебный элемент имеется в этих напитках, который делает их хмельными.

    Тем не менее, пытливые умы ученых прошлого не раз пытались выделить из вина этот волшебный компонент, отвечающий за его алкогольность (или крепость, как мы говорим сейчас).

    И вскоре обнаружилось, что спирт можно выделить при помощи процесса дистилляции жидкости. Дистилляция спирта это такой химический процесс в ходе, которого летучие компоненты (пары) испаряются, а из перебродившей смеси и получается спирт.

    К слову сам процесс дистилляции впервые был описан великим ученым и натурфилософом Аристотелем.

    На практике же получить спирт при помощи дистилляции удалось алхимикам Жа-биру и Зосим де Панополису, именно они, как мы уже писали вначале, и дали спирту его название – «spiritus vini» (дух вина), который со временем стал просто спиртом.

    Алхимики более поздних времен усовершенствовали процесс дистилляции и получения спирта, например французский врач и алхимик Арно де Вильгерр в 1334 году разработал удобную технологию получения винного спирта. А уже с 1360 года его наработки переняли итальянские и французские монастыри, которые начали активно производить спирт, называемый ими «Aqua vita» – «живая вода».

    В 1386 году «живая вода» впервые попала в Россию (точнее Московию, как тогда называли это государство). Привезенный генуэзским посольством в качестве презента царскому двору спирт очень понравился тамошним боярам (впрочем, и не только боярам). А «живая вода» впоследствии стала основой всем известного алкогольного напитка (употреблять который мы вам, однако, решительно не рекомендуем).

    Но вернемся к химии.

    Номенклатура спиртов

    Номенклатура одноатомных спиртов, как и многоатомных, зависит от названия окружающих радикалов и строения их молекул. Например:

    • Тривиальная.
    • Систематическая. Она основана на характеристике радикала и выборе углеродной цепи.
    • Карбинольная. В основе ее фигурирует название карбинол. На данный момент является устаревшей.

    Физические свойства спиртов

    Низкомолекулярный спирт – это обычно бесцветная жидкость, имеющая при этом резкий и характерный запах. Температура кипения спирта выше, нежели у других органических соединений. Это обусловлено тем, что в молекулах спиртов имеется особый вид взаимодействий – водородные связи. Вот как они выглядят.

    Применение спиртов

    Помимо алкогольных напитков разной крепости спирты применяются в косметологии при создании разных косметических средств (например, тех же одеколонов), и, разумеется, в медицине, как при создании разных лекарств, эфиров, так и в бытовом применении спирт может служить дезинфицирующим средством.

    Спирты, видео

    И в завершение образовательное видео по теме нашей статьи.

    При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.

    Источник: https://www.poznavayka.org/himiya/spirty/

    Спирты — номенклатура, получение, химические свойства

    Спитры

    Спиртами (или алканолами) называются орга­нические вещества, молекулы которых содержат одну или несколько гидроксильных групп (групп  —ОН), соединенных с углеводородным радикалом.

       Номенклатура и изомерия спиртов

    При образовании названий спиртов к названию углеводорода,соответствующего спирту,добавляют (родовой) суффикс-ол. 

    Цифрами после суффикса указывают положение гидроксильной  группы в главной цепи, а префиксами ди-, три-,тетра- и т.д.-их число:

    В нумерации атомов углерода в главной цепи положение гидроксильной группы приоритетно перед положением кратных связей:

    Начиная с третьего члена гомологического ряда, у спиртов появляется изомерия положения функциональной группы (пропанол-1 и пропанол-2), а с четвертого — изомерия углеродного скелета (бутанол-1, 2-метилпропанол-1). Для них характерна и межклассовая изомерия- спирты изомерны простым эфирам:

    Давайте дадим название спирту, формула которого указана ниже:

    Порядок построения названия:

    1. Углеродная цепь нумеруется с конца к которому ближе находится группа –ОН.2. Основная цепь содержит 7 атомов С, значит соответствующий углеводород — гептан.3. Число групп –ОН равно  2, префикс – «ди».

    4. Гидроксильные группы находятся при 2 и 3 атомах углерода, n = 2 и 4.

    Название спирта:              гептандиол-2,4

    Физические свойства спиртов

    Спирты могут образовывать водородные связи как между молекулами спирта, так и между молекулами спирта и воды. Водородные связи возникают при взаимодействии частично положительно заряженного атома водорода одной молекулы спирта и частично отрицательно заряженного атома  кислорода другой молекулы.

    Именно благодаря водородным связям между молекулами спирты имеют аномально высокие для своей молекулярной массы температуры кипения.

    Так, пропан с относительной молекулярной массой 44 при обычных условиях является газом, а простейший из спиртов-метанол,имея относительную молекулярную массу 32, в обычных условиях-жидкость.

    Низшие и средние члены ряда предельных одноатомных спиртов,содержащих от 1 до 11 атомов углерода-жидкости.Высшие спирты(начиная с C12H25OH) при комнатной температуре-твердые вещества.

    Низшие спирты имеют алкогольный запах и жгучий вкус,они хорошо растворимы в воде.По мере увеличения углеродного радикала растворимость спиртов в воде понижается, а октанол уже не смешивается с водой.

    Химические свойства спиртов

    Свойства органических веществ определяются их составом и строением. Спирты подтверждают общее правило. Их молекулы включают в себя углеводородные и гидроксильные группы, поэтому химические свойства спиртов определяются взаимодействием друг на друга этих групп.

    Характерные для данного класса соединений  свойства обусловлены наличием гидроксильной группы.

    1. Взаимодействие спиртов со щелочными и щелочноземельными металлами. Для выявления влияния углеводородного радикала на гидроксильную группу необходимо сравнить свойства вещества, содержащего гидроксильную группу и углеводородный радикал,с одной стороны, и вещества,содержащего гидроксильную группу и не содержащего углеводородный радикал,-с другой. Такими веществами могут быть,например, этанол (или другой спирт) и вода. Водород гидроксильной группы  молекул спиртов и молекул воды  способен восстанавливаться щелочными и щелочноземельными металлами(замещаться на них)
    2. Взаимодействие спиртов с галогеноводородами. Замещение гидроксильной группы на галоген приводит к образованию галогеналканов. Например:
                                                                                                                                  Данная реакция обратима.
    3. Межмолекулярная дегидратация спиртов- отщепление молекулы воды от двух молекул спиртов при нагревании в присутствии водоотнимающих средств:                                     
      В результате межмолекулярной дегидратации спиртов образуются  простые эфиры.Так, при нагревании этилового спирта с серной кислотой до температуры от 100 до 140°С образуется диэтиловый (серный) эфир.
    4. Взаимодействие спиртов с органическими и неорганическими кислотами с образованием сложных эфиров( реакция этерификации)

      Реакция этерификации катализируется сильными неорганическими кислотами. Например, при взаимодействии этилового спирта и уксусной кислоты образуется-этилацетат:
       

    5. Внутримолекулярная дегидратация спиртов происходит при нагревании спиртов в присутствии водоотнимающих средств до более высокой температуры,чем температура межмолекулярной дегидратации. В результате  образуются алкены. Эта реакция обусловлена наличием атома водорода и гидроксильной группы при соседних атомах углерода. В качестве примера можно привести  реакцию получения этена (этилена) при нагревании этанола выше  140°С в присутствии концентрированной серной кислоты:
    6.  Окисление спиртов обычно проводят сильными окислителями, например, дихроматом ка­лия или перманганатом калия в кислой среде. При этом действие окислителя направляется на тот атом углерода, который уже связан с гидро­ксильной группой. В зависимости от природы спирта и условий проведения реакции могут обра­зовываться различные продукты. Так, первичные спирты окисляются сначала в альдегиды, а затем в карбоновые кислоты:                   При окислении вторичных спиртов образуются кетоны:

      Третичные спирты достаточно устойчивы к окислению. Однако в жестких условиях (сильный окислитель, высокая температура) возможно окисление третичных спиртов, которое происходит с разрывом углерод-углеродных связей, ближай­ших к гидроксильной группе.

    7.  Дегидрирование спиртов. При пропускании паров спирта при 200-300 °С над металлическим катализатором, например медью, серебром или платиной, первичные спирты превращаются в аль­дегиды, а вторичные — в кетоны:
    8. Качествен­ная реакция на многоатомные спирты.Присутствием в молекуле спирта одновремен­но нескольких гидроксильных групп обусловлены специфические свойства многоатомных спиртов, которые способны образовывать растворимые в во­де ярко-синие комплексные соединения при взаимо­действии со свежеполученным осадком гидроксида меди (II). Для этиленгликоля можно записать:

      Одноатомные спирты не способны вступать в эту реакцию. Поэтому она является качествен­ной реакцией на многоатомные спирты.

    Ваш педагог
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: