Статья Особенности решения задач по теории вероятностей в средней школе

Содержание
  1. Как решать задачи на вероятность: от простого к сложному
  2. Что такое вероятность простыми словами
  3. Формула вероятности
  4. Задача 1
  5. Задача 2
  6. Задача 3
  7. Как решать задачи с перечислением
  8. Задача 4
  9. Как решать задачи с фиксированными элементами: разбираем на примере
  10. Задача 5
  11. Как решать задачи с двумя кубиками: используем таблицы
  12. Задача 6
  13. Задача 7
  14. Независимые события в теории вероятностей
  15. Задача 8
  16. Задача 9
  17. Задача 10
  18. Задача 11
  19. Математика и мы
  20. Теоретическая часть
  21. Задачи о выборе объектов из набора
  22. Подведем итог
  23. Спасибо, что поделились статьей в социальных сетях
  24. Как решать задачи на вероятность?
  25. Алгоритм решения задач на вероятность
  26. Как решать задачи: классическая вероятность
  27. Некогда решать? Найди решенную задачу
  28. Как решать задачи: формула Бернулли
  29. И это все? конечно, нет
  30. Теория вероятности формулы и примеры решения задач
  31. Зачем нужна теория вероятности
  32. Основные понятия теории вероятности
  33. Пример задачи из ЕГЭ по математике по определению вероятности
  34. Решение
  35. Независимые, противоположные и произвольные события
  36. Теоремы сложения и умножения вероятностей, формулы
  37. Примеры решения задач из ЕГЭ по математике на определение вероятности

Как решать задачи на вероятность: от простого к сложному

Статья Особенности решения задач по теории вероятностей в средней школе

Для успешной сдачи ЕГЭ нужно знать, как решать задачи на вероятность. Эту тему проходят в школе уже в 8-9 классе. Но многие ученики приходят в тупик при решении этих задач. Для их решения нужно быть очень внимательным и грамотно работать с формулами.

В этой статье разберем задачи по теории вероятностей по принципу от простого к сложному, научимся работать с формулой и разберем особенности решения отдельных типов задач.

Что такое вероятность простыми словами

Вся наша жизнь состоит из случайных событий, которые могут либо произойти, либо нет.

Например, вы сегодня идете на экзамен, по которому лучше остальных знаете один билет, достанется он именно вам или нет – случайность.

Так как билетов всего 20, а вам нужно вытянуть всего 1, мы можем определить вероятность, с которой вам достанется желаемый билет. Эта вероятность будет составлять 1 шанс к 20 возможным, то есть 1 к 20 или 1/20 или 0,05.

Формула вероятности

Формула для вычисления вероятности события выглядит следующим образом:где P – вероятность события;

m —  число вариантов, которые нас устраивают (число благоприятных исходов);

n – общее количество вариантов (возможных исходов).

Логично, что число благоприятных исходов всегда меньше, чем общее количество исходов, т.е. меньшее число мы делим на большее. Таким образом вероятность всегда находится в диапазоне от 0 до 1.

Приведем еще пример.

Задача 1

У нас есть пакет, в котором лежит 15 шариков, 9 из которых фиолетового цвета, а остальные белые. Какова вероятность вытащить из пакета один белый шарик?

Решение. Итак, общее количество белых шариков 15 – 9 = 6 штук, следовательно количество благоприятных исходов нашего события – 6. Общее количество возможных исходов – 15. Подставляем в формулу и получаем:

Таким образом, вероятность вытащить белый шарик равна 6/15.

Ответ: 6/15

Задачи на вероятность нужно читать внимательно, чтобы не допускать досадных ошибок. Например, вот в такой задаче.

Задача 2

В автомате, продающем, маленькие мячики есть мячи 5 цветов: 21 синих, 30 красных, 15 зеленых, 8 белых, а остальные желтые. Всего в автомате 90 мячиков. Какова вероятность, что Коле достанется мяч не синего цвета.

Решение. Мы обращаем внимание на то, что Коле должен достаться мяч НЕ синего цвета, а любого другого. Многие ученики просто не замечают частицу НЕ и ищут вероятность выпадения именно синего мяча, и естественно допускаю ошибку. Внимательно читаем условия задачи.

Итак, общее количество возможных вариантов – 90. Нам нужен любой мяч, кроме синего. Следовательно, количество вариантов, когда выпадет не синий мяч равно 90 – 21 = 69. Таким образом, вероятность того, что выпадет мячик любого цвета, кроме синего, равна:

Ну и разберем еще задачу.

Задача 3

На конкурсе выступают 11 участников из Казани, 6 участников из Нижнего Новгорода, 3 участника из Москвы и 7 участников из Твери. Порядок выступления в конкурсе определяется жеребьевкой. Какова вероятность того, что последним будем выступать конкурсант из Нижнего Новгорода? Результат округлите до сотых.

Решение. Итак, представим, что все конкурсанты подошли к барабану, где лежат номерки и тянут по одному номерку. Общее количество конкурсантов n = 11 + 6 + 3 + 7 = 27.

Нас интересует, какова вероятность того, что один из конкурсантов из Нижнего Новгорода вытянет номерок с цифрой 27. Конкурсантов из Нижнего Новгорода всего 6, следовательно m = 6.

Таким образом, вероятность будет равна:Как представить в виде десятичной дроби?

Очень просто. Нужно разделить 6,0000 на 27 уголком. Тогда вы получите 0,222… или округляя до сотых 0,22.

Ответ: 0,22

Как решать задачи с перечислением

Этот тип задач отличается от предыдущих лишь тем, что в задаче предметы поименованы. А вычисления выполняются по той же формуле:

Приведем пример такой задачи.

Задача 4

В портфеле у Васи лежали учебники по алгебре, геометрии, химии, биологии и литературе. Вася не глядя вынимает один учебник, какова вероятность того, что он вытянул алгебру?

Решение. Не смотря на то, что теперь предметы поименованы, принцип решения задачи остался прежним. Общее количество вариантов (т.е. учебников в портфеле) – 5.  Нужный нам вариант (т.е. учебник по алгебре) – 1. Следовательно, вероятность нужного нам события равна:

Р =  = 0,2

Ответ: 0,2

Как решать задачи с фиксированными элементами: разбираем на примере

Задачи на вероятность с фиксированными элементами сводятся к стандартным задачам на вероятность, но из элементов m и n нужно вычесть 1.

Давайте разберемся на примере.

Задача 5

Задача 8. В соревнованиях по борьбе участвуют 73 участника. Из них 25 участников из Москвы, в том числе Б. Егоров. На пары участники разбиваются с помощью жеребьевки. Какова вероятность того, что противником Б. Егорова станет участник из Москвы? Результат округлите до сотых.

Решение. В этой задаче есть фиксированный элемент – Б. Егоров. Это фиксированный элемент мы должны вычесть из элементов m и n.

Итак, общее количество участников – 73. Но Б. Егоров у нас уже выбран, поэтому он не участвует в жеребьевке. Следовательно, его мы исключаем из общего количества и получаем n = 72. Нас интересуют только участники из Москвы, их 25. Но опять же Б.

Егоров у нас уже выбран, поэтому он не участвует в жеребьевке. Следовательно, количество устраивающих нас вариантов m = 24. А теперь считаем по нашей формуле:Таким образом, вероятность того, что противником Б.

Егорова станет участник из Москвы равна 0,33.

Ответ: 0,33

Еще раз обратим внимание. Если в задаче есть фиксированный элемент, то мы вычитаем единицу из m и n, а дальше решаем задачу по стандартной формуле нахождения вероятности.

Как решать задачи с двумя кубиками: используем таблицы

Таблицы полезны при решении задач, где речь идет о двух игральных кубиках. Например.

Задача 6

Петя подбросил два игральных кубика. Какова вероятность того, что в сумме выпадет не менее 9 очков.

Решение. Вот в таких задачах удобнее всего построить таблицу. По горизонтали мы размещаем очки, которые могут выпасть на первом кубике, т.е. числа от 1 до 6. А по вертикали мы размещаем числа, которые могут выпасть на втором кубике, т.е. также числа от 1 до 6. Начертим таблицу:

Далее заполняем таблицу. Для этого мы вписываем сумму чисел, которые находятся на пересечении этой ячейки. Например, заполним первую строку.

В ячейке на пересечении двух единиц у нас получится 1+1 = 2, далее пересекаются 2 и 1 получаем 2 +1 = 3, далее 3 + 1 = 4, далее 4 + 1 = 5, далее 5 + 1 = 6 и в последней ячейке этой строки получим 6 + 1 = 7Таким образом, заполняем всю таблицу и получаем:Мы получили таблицу со всеми возможными вариантами выпадения значений двух кубиков и их сумму.

Теперь вернемся к нашей задаче. Нам требовалось найти вероятность того, что на кубиках выпадет сумма не менее 9 очков. Следовательно, отмечаем в таблице значения больше или равные 9:Таким образом, количество вариантов, которые нас устроят (считаем количество обведенных чисел), m = 10

А общее количество возможных вариантов выпадения значений кубиков: n = 6 * 6 = 36

Следовательно, вероятность того, что выпадет тот вариант, который нас устроит, равна:Итак, вероятность того, что на кубиках выпадет сумма не менее 9 очков, равна 0,27.

Ответ: 0,27

Задача 7

Маша подбрасывает два игральных кубика. Какова вероятность того, что в сумме на кубиках выпадет 6 очков? Результат округлите до сотых.

Решение. Берем нашу таблицу и находим значения, когда на кубиках сумма составит 6 очков:Итак, количество вариантов, которые нас устроят (считаем количество обведенных чисел), m = 5.

А общее количество возможных вариантов выпадения значений кубиков: n = 6 * 6 = 36

Следовательно, вероятность того, что выпадет тот вариант, который нас устроит, равна:Напомним, чтобы 5/36 перевести в десятичную дробь, необходимо разделить столбиком 5,00000 на 36, в результате чего получим 0,13888. Округляем до сотых и получаем 0,14.

Итак, вероятность того, что на кубиках выпадет сумма 6 очков, равна 0,14.

Ответ: 0,14

Независимые события в теории вероятностей

Если вероятность появления одного события не зависит от появления другого события, и наоборот, то такие события называются независимыми.

Если события независимые, то их вероятности перемножаются. В результате этого мы получаем вероятность возникновения этих событий одновременно.

Давайте рассмотрим задачи с независимыми событиями.

Задача 8

Стрелок стреляет  6 раз по мишеням. Вероятность попадания стрелка в мишень при каждом выстреле равна 0,8. Какова вероятность того, что стрелок попадет в мишень все 6 раз подряд?  Результат округлите до сотых.

Решение. В задаче происходит 6 независимых событий – 6 выстрелов. Вероятность каждого из них – 0,8. Чтобы найти вероятность возникновения этих независимых событий одновременно необходимо перемножить вероятности этих событий. Таким образом:

Р = 0,8 * 0,8 *0,8 * 0,8 *0,8 * 0,8 = 0,262144

Округляем результат до сотых и получаем 0,26.

Итак, вероятность того, что стрелок попадет в мишень все 6 раз подряд, равна 0,26.

Ответ: 0,26

Рассмотрим еще одну задачу, чуть сложнее.

Задача 9

Стрелок стреляет  6 раз по мишеням. Вероятность попадания стрелка в мишень при каждом выстреле равна 0,8. Какова вероятность того, что стрелок первые 2 раза промахнется, а остальные 4 раза попадет в цель? Результат округлите до сотых.

Решение. В задаче происходит 6 независимых событий – 6 выстрелов. Вероятность того, что стрелок попадет или не попадет в мишень, равна 1. Вероятность того, что стрелок попадет в мишень, равна 0,8.

Тогда вероятность того, что не попадет в мишень, равна 1 — 0,8 = 0,2. Нам нужно найти вероятность, когда стрелок два раза промахнется, а потом четыре раза попадет.

Перемножаем соответствующие вероятности:

Р = 0,2 * 0,2 * 0,8 * 0,8 * 0,8 * 0,8 = 0,016384

Округляем 0,016384 до сотых и получаем 0,02.

Итак, вероятность того, что стрелок два раза промахнется, а потом четыре раза попадет, равна 0,02.

Ответ: 0,26

Задача 10

Маше нужно выбрать из 8 книг 2 книги. Сколькими способами она может это сделать?

Мы понимаем, что здесь может быть большое количество вариантов сочетаний книг. Чтобы вычислить их количество нужно знать формулу числа сочетаний из n по m: где С – это число сочетаний

n – количество элементов, из которого нужно выбрать

m – количество элементов, которое нужно выбрать

В формуле присутствует факториал. Записывается факториал следующим образом: n!, 5!, 7! Напомним, что это такое.

Факториал – это произведение всех натуральных чисел от 1 до основания факториала. Основание факториала – это число, которое стоит перед знаком «!». Т.е. факториал 5! имеет основание 5 и найти его можно следующим образом:

5! = 1 * 2 * 3 * 4 * 5

А факториал n! имеет основание n:

n! = 1 * 2 * 3 * 4 * 5 * … * n

Часто ученики путают, что в ставить внизу, а что наверху, т.е. меняют n и m местами. Применительно к нашей задаче можно перепутать, что ставить наверху: 2 или 8. Запомнить, что ставить наверху, а что внизу – легко. Сверху всегда стоит наименьшее число, т.е. в нашем случае – это 2.

Давайте вернемся к нашей задаче. Применяем формулу и получаем: Обратите внимание, что не нужно умножать в числителе все натуральные числа от 1 до 8, у вас это отнимет очень много времени. Достаточно подробно расписать числитель и знаменатель, сделать сокращение и все легко считается.

Итак, Маша может выбрать книги 28 способами.

Ответ: 28

Давайте разберем еще одну задачу.

Задача 11

Из 15 школьников нужно отправить 2 учеников на дежурство. Сколькими способами можно это сделать?

Решение. Применяем нашу формулу:

Ответ: 105 способов

Итак, сегодня мы разбирались, как решать задачи на вероятность. Теперь вы можете приступить к практике, ведь только большое количество тренировок позволит вам успешно справиться с заданиями ЕГЭ. Еще больше информации для подготовки к ЕГЭ по математике вы можете получить на нашем сайте.

Источник: https://yourrepetitor.ru/teoriya-veroyatnostej-na-ege-po-matematike-2019-zadachi-s-resheniem/

Математика и мы

Статья Особенности решения задач по теории вероятностей в средней школе

Теория вероятностей на ЕГЭ по математике может быть представлена как в виде простых задач на классическое определение вероятности, так и в виде достаточно сложных, на применение соответствующих теорем.

В этой части рассмотрим задачи, для решения которых достаточно применения определения вероятности. Иногда здесь мы будем применять также формулу для вычисления вероятности противоположного события. Хотя без этой формулы здесь можно обойтись, она все равно понадобится при решении следующих задач.

Теоретическая часть

Случайным называют событие, которое может произойти или не произойти (заранее предсказать невозможно) во время наблюдения или испытания.

Пусть при проведении испытания (бросание монеты или кубика, вытягивание экзаменационного билета и т. д.) возможны равновозможных исходов.

Например, при подбрасывании монеты число всех исходов равно 2, так как кроме выпадения «решки» или «орла» других исходов быть не может.

При броске игрального кубика возможны 6 исходов, так как на верхней грани кубика равновозможно появление любого из чисел от 1 до 6. Пусть также некоторому событию А благоприятствуют исходов.

Вероятностью события А называется отношение числа благоприятных для этого события исходов к общему числу равновозможных исходов (это классическое определение вероятности). Пишем

Например, пусть событие А состоит в выпадении нечётного числа очков при бросании кубика. Всего возможны 6 исходов: выпадение на верхней грани кубика 1, 2, 3, 4, 5, 6. При этом благоприятными для события А являются исходы с выпадением 1, 3, 5. Таким образом, .

Заметим, что всегда выполняется двойное неравенство , поэтому вероятность любого события А лежит на отрезке [0; 1], то есть . Если у вас в ответе вероятность получается больше единицы, значит, вы где-то ошиблись и решение нужно перепроверить.

События А и В называются противоположными друг другу, если любой исход благоприятен ровно для одного из них.

Например, при бросании кубика событие «выпало нечётное число» является противоположным событию «выпало чётное число».

Событие, противоположное событию А, обозначают. Из определения противоположных событий следует , значит,  .

Задачи о выборе объектов из набора

В этих задачах нужно подсчитать общее число объектов (равно общему числу исходов) и число подходящих объектов (равно числу благоприятных исходов). После этого следует воспользоваться определением вероятности.

Задача 1. В чемпионате мира участвуют 24 команды. С помощью жребия их нужно разделить на четыре группы по шесть команд в каждой. В ящике вперемешку лежат карточки с номерами групп:

1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4.

Капитаны команд тянут по одной карточке. Какова вероятность того, что команда России окажется в третьей группе?

Решение.

Общее число исходов равно числу карточек – их 24. Благоприятных исходов 6 (так как номер 3 написан на шести карточках). Искомая вероятность равна .

Ответ: 0,25.

Задача 2. В урне 14 красных, 9 жёлтых и 7 зелёных шаров. Из урны наугад достают один шар. Какова вероятность того, что этот шар окажется жёлтым?

Решение.

Общее число исходов равно числу шаров: 14 + 9 + 7 = 30. Число исходов, благоприятствующих данному событию, равно 9. Искомая вероятность равна равна .

Ответ: 0,3

Задача 3. На клавиатуре телефона 10 цифр, от 0 до 9. Какова вероятность того, что случайно нажатая цифра будет чётной и больше 5?

Решение.

Исходом здесь является нажатие определённой клавиши, поэтому всего имеется 10 равновозможных исходов. Указанному событию благоприятствуют исходы, означающие нажатие клавиши 6 или 8. Таких исходов два. Искомая вероятность равна .

Ответ: 0,2.

Задача 4. Какова вероятность того, что случайно выбранное натуральное число от 4 до 23 делится на три?

Решение.

На отрезке от 4 до 23 имеется 23 – 4 + 1 = 20 натуральных чисел, значит, всего возможны 20 исходов. На этом отрезке кратны трём следующие числа: 6, 9, 12, 15, 18, 21. Всего таких чисел 6, поэтому рассматриваемому событию благоприятствуют 6 исходов. Искомая вероятность равна .

Ответ: 0,3.

Задача 5. Из 20 билетов, предлагаемых на экзамене, школьник может ответить только на 17. Какова вероятность того, что школьник не сможет ответить на выбранный наугад билет?

Решение.

1 -й способ.

Так как школьник может ответить на 17 билетов, то на 3 билета он ответить не может. Вероятность получить один из этих билетов по определению равна .

2-й способ.

Обозначим через А событие «школьник может ответить на билет». Тогда . Вероятность противоположного события равна =1 – 0,85 = 0,15.

Ответ: 0,15.

Задача 6. В чемпионате по художественной гимнастике участвуют 20 спортсменок: 6 из России, 5 из Германии, остальные – из Франции. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая седьмой, окажется из Франции.

Решение.

Всего 20 спортсменок, у всех равные шансы выступать седьмой. Поэтому имеются 20 равновероятных исходов. Из Франции 20 – 6 – 5 = 9 спортсменок, поэтому имеются 9 благоприятных для указанного события исходов. Искомая вероятность равна .

Ответ: 0,45.

Задача 7. Научная конференция проводится в 5 дней. Всего запланировано 50 докладов – первые три дня по 12 докладов, остальные распределены поровну между четвёртым и пятым днями. Порядок докладов определяется жеребьёвкой. Какова вероятность, что доклад профессора Н. окажется запланированным на последний день конференции?

Решение.

Сначала найдём, сколько докладов запланировано на последний день. На первые три дня запланировано докладов. Остаются ещё 50 – 36 = 14 докладов, которые распределяются поровну между оставшимися двумя днями, поэтому в последний день запланировано докладов.

Будем считать исходом порядковый номер доклада профессора Н. Всего таких равновозможных исходов 50. Благоприятствуют указанному событию 7 исходов (последние 7 номеров в списке докладов). Искомая вероятность равна .

Ответ: 0,14.

Задача 8. На борту самолёта 10 мест рядом с запасными выходами и 15 мест за перегородками, разделяющими салоны. Остальные места неудобны для пассажиров высокого роста. Пассажир К. высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру К. достанется удобное место, если всего в самолёте 200 мест.

Решение.

Исход в этой задаче – выбор места. Всего имеется 200 равновозможных исходов. Благоприятствуют событию «выбранное место удобное» 15 + 10 = 25 исходов. Искомая вероятность равна .

          Ответ: 0,125.

Задача 9. Из 1000 собранных на заводе кофемолок 7 штук бракованных. Эксперт проверяет одну наугад выбранную кофемолку из этой 1000. Найдите вероятность того, что проверяемая кофемолка окажется бракованной.

Решение.

При выборе кофемолки наугад возможны 1000 исходов, событию А «выбранная кофемолка бракованная» благоприятны 7 исходов. По определению вероятности .

Ответ: 0,007.

Задача 10. Завод производит холодильники. В среднем на 100 качественных холодильников приходится 15 холодильников со скрытыми дефектами. Найдите вероятность того, что купленный холодильник окажется качественным. Результат округлите до сотых.

Решение.

Эта задача похожа на предыдущую. Однако формулировка «на 100 качественных холодильников приходится 15 с дефектами» указывает нам, что дефектные 15 штук не входят в 100 качественных.

Поэтому общее число исходов равно 100 + 15 =115 (равно общему числу холодильников), благоприятных исходов 100. Искомая вероятность равна . Для подсчёта приближённого значения дроби удобно воспользоваться делением уголком.

Получаем  0,869…, что приблизительно равно 0,87.

Ответ: 0,87.

Задача 11. Перед началом первого тура чемпионата по теннису участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 16 теннисистов, среди которых 7 участников из России, в том числе Максим Зайцев. Найдите вероятность того, что в первом туре Максим Зайцев будет играть с каким-либо теннисистом из России.

Решение.

Как и в предыдущей задаче, необходимо внимательно прочитать условие и понять, что является исходом, а что – благоприятным исходом (так, неосмысленное применение формулы вероятности приводит к неправильному ответу ).

Здесь исход – это соперник Максима Зайцева. Так как всего теннисистов 16, а сам с собой Максим играть не может, то имеется 16 – 1 = 15 равновероятных исходов. Благоприятный исход – соперник из России. Таких благоприятных исходов 7 – 1 = 6 (из числа россиян исключаем самого Максима). Искомая вероятность равна .

Ответ: 0,4.

Задача 12. Футбольную секцию посещают 33 человека, среди них два брата –  Антон и Дмитрий. Посещающих секцию случайным образом делят на три команды по 11 человек в каждой. Найдите вероятность того, что Антон и Дмитрий окажутся в одной команде.

Решение.

Сформируем команды, последовательно помещая футболистов на свободные места, при этом начнем с Антона и Дмитрия. Сначала поместим Антона на случайно выбранное место из свободных 33.

Теперь помещаем на свободное место Дмитрия (исходом будем считать выбор места для него). Всего имеется 32 свободных места (одно уже занял Антон), поэтому всего возможны 32 исхода.

В одной команде с Антоном остается 10 свободных мест, поэтому событию «Антон и Дмитрий в одной команде» благоприятствуют 10 исходов. Вероятность этого события равна   .

Ответ: 0,3125.

Задача 13. Механические часы с двенадцатичасовым циферблатом в какой-то момент сломались и перестали ходить. Найдите вероятность того, что часовая стрелка застыла, достигнув отметки 11, но не дойдя до отметки 2 часа.

Решение.

Условно циферблат можно разделить на 12 секторов, располагающихся между отметками соседних чисел (между 12 и 1, 1 и 2, 2 и 3, …, 11 и 12). Исходом мы будем считать остановку часовой стрелки в одном из указанных секторов. Всего есть 12 равновозможных исходов. Указанному событию благоприятствуют три исхода (сектора между 11 и 12, 12 и 1, 1 и 2). Искомая вероятность равна .

Ответ: 0,25.

Подведем итог

После изучения материала по решению простых задач по теории вероятностей рекомендую выполнить задачи для самостоятельного решения, которые мы публикуем на нашем канале Telegram. Вы также можете проверить правильность их выполнения, внеся свои ответы в предлагаемую форму.

Также рекомендую изучить “Округление с недостатком” и другие уроки по решению заданий ЕГЭ по математике, которые представлены на нашем канале . 

Спасибо, что поделились статьей в социальных сетях

Источник “Подготовка к ЕГЭ. Математика.Теория вероятностей”. Под редакцией Ф.Ф. Лысенко, С.Ю. Кулабухова

Источник: https://safonova-ln.ru/teoriya-veroyatnostey-na-ege-prostyie-zadachi-chast-1/

Как решать задачи на вероятность?

Статья Особенности решения задач по теории вероятностей в средней школе

Если вас интересует вопрос заголовка, вы наверняка студент или школьник, столкнувшийся с новым для себя предметом. Задачи теории вероятностей сейчас решают и школьники пятых классов продвинутых школ, и старшеклассники перед ЕГЭ, и студенты буквально всех специальностей – от географов до математиков. Что же это за предмет такой, и как к нему подойти?

Полезная страница? Сохрани или расскажи друзьям

Теория вероятностей, как следует из названия, имеет дело с вероятностями. Нас окружают множество вещей и явлений, о которых, как бы ни была развита наука, нельзя сделать точных прогнозов.

Мы не знаем, какую карту вытянем из колоды наугад или сколько дней в мае будет идти дождь, но, имея некоторую дополнительную информацию, можем строить прогнозы и вычислять вероятности этих случайных событий.

Таким образом, мы сталкиваемся с основным понятием случайного события – явления, поведение которого невозможно предсказать, опыта, результат которого заранее невозможно вычислить и т.п. Именно вероятности событий вычисляются в типовых задачах.

Вероятность – это некоторая, строго говоря, функция, принимающая значения от 0 до 1 и характеризующая данное случайное событие. 0 – событие практически невозможно, 1 – событие практически достоверно, 0,5 (или “50 на 50”) – с равной вероятностью событие произойдет или нет.

Подробно решим ваши задачи по теории вероятностей

Алгоритм решения задач на вероятность

Подробнее с основами теории вероятностей можно ознакомиться, например, в онлайн учебнике.

А теперь не будем ходить вокруг да около, и сформулируем схему, по которой следует решать стандартные учебные задачи на вычисление вероятности случайного события, а затем ниже на примерах проиллюстрируем ее применение.

  • Внимательно прочитать задачу и понять, что именно происходит (что из какого ящика вытаскивается, что где лежало, сколько приборов работает и т.п.)
  • Найти основной вопрос задачи вроде “вычислить вероятность того, что …” и вот это многоточие записать в виде события, вероятность которого надо найти.
  • Событие записано. Теперь надо понять, к какой “схеме” теории вероятностей относится задача, чтобы правильно выбрать формулы для решения. Ответьте на тестовые вопросы типа:
    • происходит одно испытание (например, выбрасывание двух костей) или несколько (например, проверка 10 приборов);
    • если испытаний несколько, зависимы ли результаты одного от других (зависимость или независимость событий);
    • событие происходит в единственной ситуации или задача говорит о нескольких возможных гипотезах (например, шар вынимается из любого ящика из трех, или из конкретного).

    Чем больше опыт решения задач, тем легче будет определить, какие формулы подходят.

  • Выбрана формула (или несколько) для решения. Записываем все данные задачи и подставляем в данную формулу.
  • Вуаля, вероятность найдена.

Как решать задачи: классическая вероятность

Пример 1. В группе из 30 студентов на контрольной работе 6 студентов получили «5», 10 студентов – «4», 9 студентов – «3», остальные – «2». Найти вероятность того, что 3 студента, вызванные к доске, получили по контрольной работе «2».

Начинаем решение по пунктам, описанным выше.

  • В задаче речь идет о выборе 3 студентов из группы, которые удовлетворяют определенным условиям.
  • Вводим основное событие $X$ = (Все 3 студента, вызванные к доске, получили по контрольной работе «2»).
  • Так как в задаче происходит только одно испытание и оно связано с отбором/выбором по определенному условию, речь идет о классическом определении вероятности. Запишем формулу: $P=m/n$, где $m$ – число исходов, благоприятствующих осуществлению события $X$, а $n$ – число всех равновозможных элементарных исходов.
  • Теперь необходимо найти значения $m$ и $n$ для этой задачи. Сначала найдем число всех возможных исходов – число способов выбрать 3 студентов из 30. Так как порядок выбора не имеет значения, это число сочетаний из 30 по 3: $$n=C_{30}3=\frac{30!}{3!27!}=\frac{28\cdot 29 \cdot 30}{1\cdot 2 \cdot 3}=4060.$$ Найдем число способов вызвать только студентов, получивших “2”. Всего таких студентов было $30-6-10-9=5$ человек, поэтому $$m=C_{5}3=\frac{5!}{3!2!}=\frac{4 \cdot 5}{1\cdot 2}=10.$$
  • Получаем вероятность: $$P(X)=\frac{m}{n}=\frac{10}{4060}=0,002.$$ Задача решена.

Еще: Решенные задачи на классическое определение вероятности.

Некогда решать? Найди решенную задачу

Готовые решения задач по любым разделам теории вероятностей, более 10000 примеров! Найди свою задачу:

Как решать задачи: формула Бернулли

Пример 2. Какова вероятность того, что при 8 бросаниях монеты герб выпадет 5 раз?

Снова по схеме решения задач на вероятность рассматриваем данную задачу:

  • В задаче идет речь о серии одинаковых испытаний – бросаний монеты.
  • Вводим основное событие $X$ = (При 8 бросаниях монеты герб выпадет 5 раз).
  • Так как в задаче происходит несколько испытаний, и вероятность появления события (герба) одинакова в каждом испытании, речь идет о схеме Бернулли. Запишем формулу Бернулли, которая описывает вероятность того, что из $n$ бросков монет герб выпадет ровно $k$ раз: $$ P_{n}(k)=C_nk \cdot pk \cdot (1-p){n-k}.$$
  • Записываем данные из условия задачи: $n=8, p=0,5$ (вероятность выпадения герба в каждом броске равна 0,5) и $k=5$
  • Подставляем и получаем вероятность: $$ P(X)=P_{8}(5)=C_85 \cdot 0,55 \cdot (1-0,5){8-5}=\frac{8!}{5!3!}\cdot 0,58=\frac{6\cdot 7 \cdot 8}{1\cdot 2 \cdot 3} \cdot 0,58= 0,219.$$Задача решена.

Еще примеры: Решенные задачи на формулу Бернулли

И это все? конечно, нет

Выше мы упомянули только малую часть тем и формул теории вероятностей, для более подробного изучения вы можете посмотреть учебник онлайн на данном сайте (или скачать классические учебники по ТВ), ознакомиться со статьями по решению вероятностных задач, бесплатными примерами, воспользоваться онлайн калькуляторами. Удачи!

Полезная страница? Сохрани или расскажи друзьям

О решении теории вероятностей

Источник: https://www.MatBuro.ru/tvart_sub.php?p=art_tv

Теория вероятности формулы и примеры решения задач

Статья Особенности решения задач по теории вероятностей в средней школе

События, которые происходят реально или в нашем воображении, можно разделить на 3 группы. Это достоверные события, которые обязательно произойдут, невозможные события и случайные события. Теория вероятностей изучает случайные события, т.

е. события, которые могут произойти или не произойти. В данной статье будет представлена в кратком виде теория вероятности формулы и примеры решения задач по теории вероятности, которые будут в 4 задании ЕГЭ по математике (профильный уровень).

Зачем нужна теория вероятности

Исторически потребность исследования этих проблем возникла в XVII веке в связи с развитием и профессионализацией азартных игр и появлением казино. Это было реальное явление, которое требовало своего изучения и исследования.

Игра в карты, кости, рулетку создавала ситуации, когда могло произойти любое из конечного числа равновозможных событий. Возникла необходимость дать числовые оценки возможности наступления того или иного события.

В XX веке выяснилось, что эта, казалось бы, легкомысленная наука играет важную роль в познании фундаментальных процессов, протекающих в микромире. Была создана современная теория вероятностей.

Основные понятия теории вероятности

Объектом изучения теории вероятностей являются события и их вероятности. Если событие является сложным, то его можно разбить на простые составляющие, вероятности которых найти несложно.

Суммой событий А и В называется событие С, заключающееся в том, что произошло либо событие А, либо событие В, либо события А и В одновременно.

Произведением событий А и В называется событие С, заключающееся в том, что произошло и событие А и событие В.

События А и В называется несовместными, если они не могут произойти одновременно.

Событие А называется невозможным, если оно не может произойти. Такое событие обозначается символом .

Событие А называется достоверным, если оно обязательно произойдет. Такое событие обозначается символом .

Пусть каждому событию А поставлено в соответствие число P{А). Это число P(А) называется вероятностью события А, если при таком соответствии выполнены следующие условия.

  1. Вероятность принимает значения на отрезке от 0 до 1, т.е. .
  2. Вероятность невозможного события равна 0, т.е. .
  3. Вероятность достоверного события равна 1, т.e. .
  4. Если события A и В несовместные, то вероятность их суммы равна сумме их вероятностей, т.е. .

Важным частным случаем является ситуация, когда имеется равновероятных элементарных исходов, и произвольные  из этих исходов образуют события А. В этом случае вероятность можно ввести по формуле . Вероятность, введенная таким образом, называется классической вероятностью. Можно доказать, что в этом случае свойства 1-4 выполнены.

Задачи по теории вероятностей, которые встречаются на ЕГЭ по математике, в основном связаны с классической вероятностью. Такие задачи могут быть очень простыми. Особенно простыми являются задачи по теории вероятностей в демонстрационных вариантах. Легко вычислить число благоприятных исходов , прямо в условии написано число всех исходов .

Ответ получаем по формуле .

Пример задачи из ЕГЭ по математике по определению вероятности

На столе лежат 20 пирожков — 5 с капустой, 7 с яблоками и 8 с рисом. Марина хочет взять пирожок. Какова вероятность, что она возьмет пирожок с рисом?

Решение

Всего равновероятных элементарных исходов 20, то есть Марина может взять любой из 20 пирожков. Но нам нужно оценить вероятность того, что Марина возьмет пирожок с рисом, то есть , где А — это выбор пирожка с рисом. Значит у нас количество благоприятных исходов (выборов пирожков с рисом) всего 8. Тогда вероятность будет определяться по формуле:

Ответ: 0,4

Независимые, противоположные и произвольные события

Однако в открытом банке заданий стали встречаться и более сложные задания. Поэтому обратим внимание читателя и на другие вопросы, изучаемые в теории вероятностей.

События А и В называется независимыми, если вероятность каждого из них не зависит от того, произошло ли другое событие.

Событие B состоит в том, что событие А не произошло, т.е. событие B является противоположным к событию А. Вероятность противоположного события равна единице минус вероятность прямого события,т.е. .

Теоремы сложения и умножения вероятностей, формулы

Для произвольных событий А и В вероятность суммы этих событий равна сумме их вероятностей без вероятности их совместного события, т.е. .

Для независимых событий А и В вероятность произведения этих событий равна произведению их вероятностей, т.е. в этом случае .

Последние 2 утверждения называются теоремами сложения и умножения вероятностей.

Не всегда подсчет числа исходов является столь простым. В ряде случаев необходимо использовать формулы комбинаторики. При этом наиболее важным является подсчет числа событий, удовлетворяющих определенным условиям. Иногда такого рода подсчеты могут становиться самостоятельными заданиями.

Сколькими способами можно усадить 6 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику.

Для третьего ученика остается 4 свободных места, для четвертого — 3, для пятого — 2, шестой займет единственное оставшееся место.

Чтобы найти число всех вариантов, надо найти произведение , которое обозначается символом 6! и читается «шесть факториал».

В общем случае ответ на этот вопрос дает формула для числа перестановок из п элементов  В нашем случае .

Рассмотрим теперь другой случай с нашими учениками. Сколькими способами можно усадить 2 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Чтобы найти число всех вариантов, надо найти произведение .

В общем случае ответ на этот вопрос дает формула для числа размещений из n элементов по k элементам

В нашем случае .

И последний случай из этой серии. Сколькими способами можно выбрать трех учеников из 6? Первого ученика можно выбрать 6 способами, второго — 5 способами, третьего — четырьмя.

Но среди этих вариантов 6 раз встречается одна и та же тройка учеников. Чтобы найти число всех вариантов, надо вычислить величину: .

В общем случае ответ на этот вопрос дает формула для числа сочетаний из элементов по элементам:

В нашем случае .

Примеры решения задач из ЕГЭ по математике на определение вероятности

Задача 1. Из сборника под ред. Ященко.

На тарелке 30 пирожков: 3 с мясом, 18 с капустой и 9 с вишней. Саша наугад выбирает один пирожок. Найдите вероятность того, что он окажется с вишней.

Решение:

.

Ответ: 0,3.

Задача 2. Из сборника под ред. Ященко.

В каждой партии из 1000 лампочек в среднем 20 бракованных. Найдите вероятность того, что наугад взятая лампочка из партии будет исправной.

Решение: Количество исправных лампочек 1000-20=980. Тогда вероятность того, что взятая наугад лампочка из партии будет исправной:

Ответ: 0,98.

Задача 3.

Вероятность того, что на тестировании по математике учащийся У. верно решит больше 9 задач, равна 0,67. Вероятность того, что У. верно решит больше 8 задач, равна 0,73. Найдите вероятность того, что У. верно решит ровно 9 задач.

Решение:

Если мы вообразим числовую прямую и на ней отметим точки 8 и 9, то мы увидим, что условие «У. верно решит ровно 9 задач» входит в условие «У. верно решит больше 8 задач», но не относится к условию «У. верно решит больше 9 задач».

Однако, условие «У. верно решит больше 9 задач» содержится в условии «У. верно решит больше 8 задач». Таким образом, если мы обозначим события: «У. верно решит ровно 9 задач» — через А, «У. верно решит больше 8 задач» — через B, «У. верно решит больше 9 задач» через С. То решение будет выглядеть следующим образом:

.

Ответ: 0,06.

Задача 4.

На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Тригонометрия», равна 0,2. Вероятность того, что это вопрос по теме «Внешние углы», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Решение.

Давайте подумаем какие у нас даны события. Нам даны два несовместных события. То есть либо вопрос будет относиться к теме «Тригонометрия», либо к теме «Внешние углы». По теореме вероятности вероятность несовместных событий равна сумме вероятностей каждого события, мы должны найти сумму вероятностей этих событий, то есть:

Ответ: 0,35.

Задача 5.

Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,29. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.

Решение:

Рассмотрим возможные события. У нас есть три лампочки, каждая из которых может перегореть или не перегореть независимо от любой другой лампочки. Это независимые события.

Тогда укажем варианты таких событий. Примем обозначения: — лампочка горит, — лампочка перегорела. И сразу рядом подсчитаем вероятность события.

Например, вероятность события, в котором произошли три независимых события «лампочка перегорела», «лампочка горит», «лампочка горит»: , где вероятность события «лампочка горит» подсчитывается как вероятность события, противоположного событию «лампочка не горит», а именно: .

Заметим, что благоприятных нам несовместных событий всего 7. Вероятность таких событий равна сумме вероятностей каждого из событий: .

Ответ: 0,975608.

Еще одну задачку вы можете посмотреть на рисунке:

Таким образом, мы с вами поняли, что такое теория вероятности формулы и примеры решения задач по которой вам могут встретиться в варианте ЕГЭ.

Источник: https://repetitor-mathematics.ru/teoriya-veroyatnosti-formulyi-i-primeryi-resheniya-zadach/

Ваш педагог
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: