Статья Отработка умения решать задачи с помощью таблицы

Содержание
  1. Как научиться решать задачи по математике, что для этого необходимо
  2. Как научиться решать задачи по математике
  3. Для чего необходим навык решения задач
  4. Общий алгоритм обучения
  5. Простейшие задачи
  6. Более сложный уровень
  7. Методы решения логических задач
  8. Метод последовательных рассуждений
  9. Метод «с конца»
  10. Решение логических задач с помощью таблиц истинности
  11. Метод блок-схем
  12. Творческий подход в решении задач
  13. Подготовка к олимпиадам
  14. Распространенные ошибки в решении задач
  15. Заключение
  16. Урок математики в начальной школе: учимся работать с таблицей
  17. 1 класс
  18. 2 класс
  19. 3 класс
  20. 4 класс
  21. 2. Справочные таблицы
  22. 3. Логические таблицы
  23. 4. Вычислительные таблицы
  24. 5. Таблицы для решения задач
  25. Задание с таблицей из демоверсии ВПР по математике (4 класс)
  26. Урок 27§22. Логические задачи и способы их решения
  27. 22.3. Задачи на сопоставление. Табличный метод
  28. 22.4. Использование таблиц истинности для решения логических задач
  29. Как решать логические задачи + Примеры | Интерактивная образовательная платформа для обучения детей начальной и средней школы – Умназия
  30. Самое главное в решении логических задач
  31. Известные техники решения логических задач

Как научиться решать задачи по математике, что для этого необходимо

Статья Отработка умения решать задачи с помощью таблицы

Изучение математики позволяет ребёнку получить навыки правильного мышления. Этому учат в школе, однако помощь родителей очень важна. Ребёнку нужно объяснять, как научиться решать задачи по математике, с чего начать, какими способами для этого пользоваться. Для того, чтобы достичь успехов в изучении этого предмета, дети должны систематически развивать соответствующие навыки.

Как научиться решать задачи по математике

Умение находить решение сложных задач важно не только для успешного прохождения курса по математике, но и для развития логического мышления. Решая всё более трудные задачи. Ребёнок постепенно учится находить выход из сложных ситуаций и закаляет характер в борьбе с трудностями.

Для чего необходим навык решения задач

Задачи, которые приходится решать детям могут быть различными: от очень простых до самых сложных. Первые применяются для начального усвоения теоретических знаний. Более сложные позволяют развивать навыки решения и изучать основные методы, применяемые в таких случаях.

Для того, чтобы овладеть искусством решения задач прежде всего нужна практика. Однако она должна быть организована таким образом, чтобы дети, упражняясь осваивали и закрепляли новые знания.

Общий алгоритм обучения

Разделение условия на елементы

Нужно воспитать у ребёнка общий подход к задачам. Он должен включать в себя следующее:

  • разделение на элементы: условия, что надо получить, процесс решения, ответ;
  • нужно предварительно составить план решения. Маленькие дети могут вместо него использовать рисунки и несложные схемы;
  • нужно внимательно изучить условия и постараться найти в них ключ к получению ответа.

Основой для обучения является практика. При этом необходимо ребёнку разъяснять непонятное и подсказывать при необходимости правильные шаги.

Простейшие задачи

Некоторые задачи не требуют выполнения сложных действий. Несмотря на то, что решение обычно можно получить в результате несложного применения имеющихся знаний, для работы над ними желательно использовать следующую методику:

  1. Нужно, чтобы было ясно, о чём в задаче идёт речь. Иногда для этого нужно сделать рисунок.
  2. Простые задачи решаются в одно действие.
  3. Если ребёнок испытывает сложности в понимании условий, условия можно показать на предметах.
  4. Нужно, чтобы была ясна разница между тем, нужно увеличить или уменьшить.
  5. Для того, чтобы решить задачу, ребёнок должен понимать, какое действие требуется выполнить: сложение или вычитание.

В таких задачах важно не найти путь решения, а понимать природу основных математических действий. В их изучении помогут подробные объяснения и наглядные примеры.

Более сложный уровень

Для того, чтобы решать более сложные задачи, необходимо знать основные методы, которые обычно применяются для этого. Для того, чтобы правильно начать работать над решением, нужно начать со следующего:

  • нужно внимательно прочесть условия задачи;
  • необходимо точно понять, о чём идёт речь;
  • желательно наглядно, в виде схемы, графика или таблицы изобразить условия и каждое действие, которое там упомянуто;
  • в процессе работы нужно на основе известного получать новую информацию, делать это до тех пор, пока есть возможность.

Важно применять уже известные методы решения, если это уместно.

Методы решения логических задач

Для успеха важно, чтобы у ученика было развито творческое мышление. Однако только этого будет недостаточно. Он должен опираться на прочные теоретические знания, навыки в решении задач и стараться использовать уже известные методы.

Метод последовательных рассуждений

Наглядная демонстрация

Этот способ предусматривает внимательный анализ условий задачи и выполнение последовательных шагов для получения решения.

На каждом этапе определяют, что известно и что необходимо узнать, делают нужные действия и получают новую информацию, постепенно приближаясь к решению.

Этот метод можно прояснить на следующем примере.

По условиям задачи на столе лежат четыре карандаша различных цветов. Нужно расположить их в определённом порядке. О них известно следующее:

  1. Карандаши имеют цвета: зелёный, красный, синий, коричневый.
  2. На втором месте находится тот, в котором меньше букв.
  3. Зелёный расположен рядом с синим и красным.

Для того, чтобы получить решение, нужно делать последовательные шаги. Сначала синий кладут на второе место. Зелёный может быть только на третьем месте. Затем на четвёртое кладут красный карандаш, а на первое — коричневый.

Метод «с конца»

Такой способ решения применяется обычно в тех случаях, когда известна конечная ситуация и требуется восстановить то, что происходило в начале.

Метод решения можно пояснить на следующем примере.

Бабушка для любимых внучат испекла рогалики. Она сделала их столько, чтобы всем троим досталось поровну. Однако они всё перепутали. Петя пришёл раньше других и взял себе третью часть тех рогаликов, которые были на столе. Он оставил Наташе и Косте остальные.

Наташа пришла второй и тоже взяла себе треть рогаликов. Костя пришёл позже всех, разделил их на три части, себе взял одну из них. После этого на столе осталось 8 рогаликов.

Нужно узнать, сколько должны из них взять Костя и Наташа, чтобы получилось, что все съели поровну.

Решая задачу с конца, нужно выполнить следующие шаги:

  1. Поскольку в конце осталось 8 рогаликов, а Костя честно поделился со всеми, то он взял себе 4 штуки. До него на столе их лежало 12.
  2. Наташа оставила по 6 рогаликов, значит она себе взяла столько же. До неё на столе лежало 18.
  3. Петя взял третью часть — 9 штук. Получается бабушка испекла 27 штук.

Каждому из внучат полагалось по 9 рогаликов. Петя съел свою долю, наташе нужно взять ещё 3, а Косте — 5 штук.

Решение логических задач с помощью таблиц истинности

Такой метод применяется для решения логических задач. В этом случае составляется таблица, в которой нужно установить соответствие между условиями задачи и вариантами ответа. В ней можно более наглядно увидеть формулировку, что даёт возможность найти решение.

Сказанное можно проиллюстрировать примером.

Плюс или минус

Рассматривается игра в баскетбол с участием трёх спортсменов. Ваня, Серёжа и Миша. Один из них забросил мяч в корзину. Спортсмены утверждают следующее:

  • Ваня говорит, что мяч забросил Серёжа;
  • Миша отрицает, что попал в корзину;
  • Серёжа утверждает, что это сделал Миша.

Известно, что в двух случаях была сказана правда, а в одном — ложь. Требуется узнать, кто именно забросил мяч.

Для решения делают таблицу истинности. В ней каждая строчка соответствует одному из спортсменов, а столбик — тому, кто забросил мяч. Каждой клеточке соответствует одно из утверждений о том, кто попал в корзину.

Первый столбик соответствует тому, что это сделал Ваня. В каждой строке можно поставить минус или плюс в соответствии со сделанными утверждениями. В данном случае два из них окажутся ложными.

Аналогичная ситуация возникнет при рассмотрении утверждения о том, что это Серёжа. А вот в случае последнего варианта (забросил Миша), ложным будет только одно из утверждений. Таким образом найдено решение, соответствующее условиям задачи.

Метод блок-схем

Некоторые задачи требуют для своего решения большей наглядности. К такой категории относятся, например, задачи на переливание жидкости или на взвешивание.

Чтобы воспользоваться этим методом, нужно предпринять следующие шаги:

  1. Операции, о которых идёт речь в условии задачи, изображаются в виде графической схемы.
  2. В соответствии с порядком выполнения действий, отдельно рассматривается каждое из них.
  3. После каждого шага требуется зафиксировать произошедшие изменения.

После того, как были проанализированы все сделанные шаги, можно найти решение задачи.

Творческий подход в решении задач

Здесь и волшебник не поможет

Развитие способности к математическому творчеству может стать основой для решения задач в дальнейшем. Знание методики поиска решений очень важно, однако иногда нужно приложить значительные усилия для нахождения ответа.

Творческие возможности могут быть развиты путём проведения постоянных занятий. В этом могут помочь придумывание различных необычных задач, доступных ребёнку, однако требующих применения творческого подхода.

Нужно учить рассуждать, поощрять попытки понять сложные моменты при поиске решения. В этом могут помочь следующие действия:

  1. Придумывание задач, в которых имеются излишние данные. Малыш сможет сформулировать, какие цифры для него нужны, а какие не несут пользы.
  2. Создание по имеющейся задаче обратной.
  3. Можно предложить несколько формулировок задач, имеющих одинаковое решение.
  4. Поощрять применение нескольких способов решения.

Постоянная работа над развитием способности к творчеству позволит ребёнку стать более уверенным при решении задач.

Подготовка к олимпиадам

Обучение в школе помогает не только освоить теоретический материал, но и получить навыки решения задач. На олимпиадах предлагаются задачи. Для решения которых необходимо особый подход. Для того, чтобы добиться успехов, необходимо провести дополнительную подготовку.

Олимпиадные задачи сложные, но научиться их решать можно. Процесс подготовки начинают с наиболее простых и постепенно их усложняют. В результате творческие возможности учеников растут, а навыки решения задач постепенно совершенствуются.

Важно научить подходить к задаче спокойно и методично, на основе уже известного. Получая новую информацию.

Это можно проиллюстрировать на такой задаче. Фермер содержит семь свиней. За 5 суток им потребуется 35 мешков корма. Сосед просит подержать 4 свиней в течение 3 дней. Нужно определить, сколько мешков корма потребуется дополнительно.

Сначала выясняют, сколько корма у фермера съедает одна свинья. Для этого нужно 35 разделить на 7. За 5 дней требуется 5 мешков.

4 свиньям за один день будет нужно 4 мешка. За три дня их потребуется 12.

Постепенно усложняя задачи, можно закрепить навыки их решения.

Распространенные ошибки в решении задач

Усный счет и логика

Важным условием успешной работ над решением задачи является внимательное изучение условий, задачи. Невнимательность может привести к тому, что будут упущены важные детали. Это приведёт к неверному ответу или невозможности найти решение.

Иногда в процессе решения возникают ошибки. Для того, чтобы их избежать, необходимо действовать последовательно, аккуратно выполняя каждый шаг. Надо на каждом этапе точно определять, что известно и что надо получить. Обычно по двум известным числам с помощью вычислений получают третье. Делая последовательные шаги таким образом, можно прийти к решению.

Иногда в результате решения находят ответ, но записывают его неправильно. Это может быть связано с невнимательностью при чтении условий. Нужно, чтобы ребёнок чётко сформулировал, что именно необходимо найти. Это поможет правильно записать ответ.

Заключение

Умение решать математические задачи можно развивать. Для этого нужна не только регулярная практика, но и знание методики и основных методов их решения.

Как объяснить ребенку логику задач и научить быстро их решать, вы узнаете из видео.

Выделите ее и нажмите Ctrl+Enter, чтобы сообщить нам.

Источник: https://vyuchit.work/zadachi/reshenie/kak-nauchitsya-reshat-zadachi-po-matematike.html

Урок математики в начальной школе: учимся работать с таблицей

Статья Отработка умения решать задачи с помощью таблицы

Статьи

Начальное общее образование

Линия УМК Г. К. Муравина, О. В. Муравиной Математика (1-4)

Математика

Работа с таблицами — это работа с информацией, без чего в наше время не обойтись.

Поэтому авторы курса «Математика» для 1-4 классов Георгий Муравин и Ольга Муравина уделили таблицам большое внимание в своих учебниках.

Рассмотрим подробнее, с примерами, какие виды таблиц и задания к ним предлагают авторы учебников, как выстроено постепенное освоение важного метапредметного умения на уроках математики (с первого класса и до ВПР).

13 мая 2019

Информационные таблицы содержат данные, которые ученику нужно использовать при выполнении задания. Могут быть указаны площади стран, сведения из биологии, другие показатели. Дети получают задания: «найди информацию», «классифицируй», «расположи по уменьшению» (и возрастанию), «сделай вычисления», «составь вопросы по таблице» и др. Вычисления производятся отдельно.

1 класс

(Из проверочных работ. Задание «со звездочкой»)

На даче собрали урожай ягод. Их количество записали в таблицу

Укажите верные утверждения, составленные по таблице.

  • Крыжовника больше, чем малины.
  • Черники меньше, чем крыжовника.
  • Малины столько же, сколько черники.
  • Крыжовника больше, чем черники, но меньше, чем клубники.

2 класс

(Из проверочных работ)

В таблице указано расписание движения поездов

НаправлениеНомер поездаВремя отправления
Москва — Сочи083С20 ч 10 мин
Москва — Уфа116Й12 ч 26 мин
Москва — Анапа109В23 ч

Запиши ответ на вопросы.

  1. Какой номер поезда Москва — Анапа?
  2. В какое время отправляется поезд Москва — Сочи?
  3. В какой город поезд отправляется раньше всех?

3 класс

«Моя телефонная книга»

Составь свою телефонную книгу. Расположи абонентов в алфавитном порядке. Какие телефоны экстренных служб обязательно должны быть занесены в книгу?

Список абонентовТелефон

4 класс

Ответьте на вопросы по таблице, в которой записана длина корней некоторых растений.

ПшеницаФасольГорохЛенРожь
150 см70 см90 см80 см130 см

  1. Какое растение имеет: а) самые длинные корни; б) самые короткие корни?
  2. Расставь растения в порядке уменьшения длины корней.
  3. На сколько сантиметров корни пшеницы длиннее, чем корни льна?
  4. На сколько сантиметров корни гороха короче, чем корни ржи?

Занимательная математика. 1 класс. Рабочая тетрадь

Пособие может быть использовано в начальной школе при проведении занятий математического факультатива, кружка, олимпиады, клуба «Эрудит», интеллектуального марафона и других форм организации внешкольной деятельности учащихся.

Задания, включенные в рабочую тетрадь, способствуют формированию у детей самостоятельности, наблюдательности, геометрической зоркости и умения рассуждать, а также создают условия для развития интереса к математике, математического кругозора и эрудиции учащихся.

Купить

2. Справочные таблицы

Справочные таблицы в первом классе показывают числа в пределах 20 с разных точек зрения. И далее, они помогают познакомить учеников с названиями чисел, видами вычислений, разрядами чисел, единицами измерения.

3. Логические таблицы

Логические таблицы ставят перед учениками логические задачи: проанализировать данные, найти закономерности. Например: «дополни таблицу нужными элементами» (фигурами/числами), «продолжи запись», «сопоставь числа и формулы», «вставь подходящее число из предложенных и сделай вычисление» и т.д.

4. Вычислительные таблицы

Вычислительные таблицы являются формой вычислительного задания, то есть ученики производят вычисления непосредственно в таблице. Так школьники повторяют компоненты действий и составы чисел, работают с множителями, делимыми, разностями, остатками и т.д.

5. Таблицы для решения задач

Таблицы для решения задач подобны вычислительным таблицам, однако используются в заданиях с текстовыми задачами, сопровождаются иллюстрациями, схемами. Такие таблицы часто предусматривают работу с формулами и с пропорциями.

Задание с таблицей из демоверсии ВПР по математике (4 класс)

Проверяемые умения в соответствии с ФГОС:

  • Умение работать с таблицами, схемами, графиками диаграммами, анализировать и интерпретировать данные.
  • Сравнивать и обобщать информацию, представленную в строках и столбцах несложных таблиц и диаграмм.

Задание:

В спортивных соревнованиях по нескольким видам спорта приняли участие 4 команды. Количество медалей, полученных командами, представлено в таблице. Используя эти данные, ответь на вопросы.

КомандаЗолотыеСеребряныеБронзовые
«Сириус»783
«Орион»645
«Заря»467
«Весна»325

1) Сколько серебряных медалей завоевала команда «Сириус»? 2) Какая команда заняла 3-е место по сумме всех медалей?

Решение: 1) 7 + 8 + 3 = 18 (м.) — «Сириус»; 2) 6 + 4 + 5 = 15 (м.) — «Орион»; 3) 4 + 6 + 7 = 17 (м.) — «Заря»; 4) 3 + 2 + 5 = 10 (м.) — «Весна».

Ответ: 1) 8; 2) Орион.

Вы можете апробировать учебники «Математика» авторства Г. К. Муравина и О. В. Муравиной. Для этого воспользуйтесь акцией «5 учебников бесплатно».

#ADVERTISING_INSERT#

Источник: https://rosuchebnik.ru/material/urok-matematiki-v-nachalnoy-shkole-uchimsya-rabotat-s-tablitsey/

Урок 27§22. Логические задачи и способы их решения

Статья Отработка умения решать задачи с помощью таблицы

22.3. Задачи на сопоставление. Табличный метод. 22.4. Использование таблиц истинности для решения логических задач
22.2. Задачи о рыцарях и лжецах22.5. Решение логических задач путём упрощения логических выражений

22.3. Задачи на сопоставление. Табличный метод

Многие логические задачи связаны с рассмотрением нескольких конечных множеств и связей между их элементами. Для решения таких задач зачастую прибегают к помощи таблиц или графов. От того, насколько удачно выбрана их структура, во многом зависит успешность решения задачи.

Пример 5. В летнем лагере в одной палатке жили Алёша, Боря, Витя и Гриша.

Все они разного возраста, учатся в разных классах (с 7-го по 10-й) и занимаются в разных кружках: математическом, авиамодельном, шахматном и фотокружке.

Выяснилось, что фотограф старше Гриши, Алёша старше Вити, а шахматист старше Алёши. В воскресенье Алёша с фотографом играли в теннис, а Гриша в то же время проиграл авиамоделисту в городки.

Определим, кто в каком кружке занимается.

В этой задаче речь идёт о высказывательной форме (предикате) вида «Ученик х занимается в кружке у». Требуется определить такие значения х и у, чтобы высказывательная форма превратилась в истинное высказывание.

Составим таблицу:

Рассмотрим условия: 1) фотограф старше Гриши; 2) Алёша старше Вити, а шахматист старше Алёши; 3) в воскресенье Алёша с фотографом играли в теннис, а Гриша в то же время проиграл авиамоделисту в городки.

Можем сделать выводы: Гриша — не фотограф (1); шахматист — не Алёша и не Витя (2); Алёша — не фотограф и не авиамоделист, Гриша — не фотограф и не авиамоделист (3). Отметим это в таблице:

Имеющейся информации достаточно для того, чтобы утверждать, что Алёша занимается математикой, а Гриша — шахматами:

Из того, что Гриша — шахматист, и условий (1) и (2) следует, что мы можем расположить учеников по возрасту (в порядке возрастания): Витя — Алёша — шахматист Гриша — фотограф. Следовательно, Боря — фотограф. Этого достаточно, чтобы окончательно заполнить таблицу:

Итак, Алёша занимается в математическом кружке, Боря — в фотокружке, Витя — в авиамодельном кружке, Гриша — в шахматном кружке.

Самостоятельно сделайте вывод о том, кто из ребят в каком классе учится.

22.4. Использование таблиц истинности для решения логических задач

Аппарат алгебры логики позволяет применять к широкому классу логических задач универсальные методы, основанные на формализации условий задачи.

Одним из таких методов является построение таблицы истинности по условию задачи и её анализ.

Для этого следует: 1) выделить из условия задачи элементарные (простые) высказывания и обозначить их буквами; 2) записать условие задачи на языке алгебры логики, соединив простые высказывания в составные с помощью логических операций; 3) построить таблицу истинности для полученных логических выражений; 4) выбрать решение — набор логических переменных (элементарных высказываний), при котором значения логических выражений соответствуют условиям задачи; 5) убедиться, что полученное решение удовлетворяет всем условиям задачи.

Пример 6. Три подразделения А, В, С торговой фирмы стремились получить по итогам года максимальную прибыль.

Экономисты высказали следующие предположения: 1) если А получит максимальную прибыль, то максимальную прибыль получат B и С; 2) А и С получат или не получат максимальную прибыль одновременно; 3) необходимым условием получения максимальной прибыли подразделением С является получение максимальной прибыли подразделением B.

По завершении года оказалось, что одно из трёх предположений ложно, а остальные два истинны.

Выясним, какие из названных подразделений получили максимальную прибыль.

Рассмотрим элементарные высказывания: • А — «А получит максимальную прибыль»; • В — «B получит максимальную прибыль»; • С — «С получит максимальную прибыль».

Запишем на языке алгебры логики прогнозы, высказанные экономистами:

Составим таблицу истинности для F1, F2, F3.

Теперь вспомним, что из трёх прогнозов F1, F2, F3 один оказался ложным, а два других — истинными. Эта ситуация соответствует четвёртой строке таблицы.

Таким образом, максимальную прибыль получили подразделения В и С.

Cкачать материалы урока

Источник: https://xn----7sbbfb7a7aej.xn--p1ai/informatika_10_fgos/informatika_materialy_zanytii_10_27_fgos_03.html

Как решать логические задачи + Примеры | Интерактивная образовательная платформа для обучения детей начальной и средней школы – Умназия

Статья Отработка умения решать задачи с помощью таблицы

Логика – это основа рационального мышления и фундамент для развития интеллекта ребенка. Решение различных логических задач дает возможность детям научиться анализировать ситуацию, находить взаимосвязи, отличать главное и второстепенное, формировать стратегию, применять в нужном месте свои знания и навыки.

Эти умения пригодятся не только в учебе, но и в реальной жизни. Рассуждая логически, ребенок может грамотно выразить свое мнение, подойти к решению той или иной задачи более осознанно, дать обоснование всевозможным явлениям, быстро сориентироваться в ситуации.

Поэтому решение логических задач должно быть неотъемлемой частью детского развития и образования. А для того, чтобы щелкать их как орешки, нужно понимать, какими приемами и методами пользоваться при решении.

Самое главное в решении логических задач

Почти у любой задачи есть несколько вариантов решения. Чтобы легко справляться даже с самыми непростыми заданиями, надо знать, какой способ будет наиболее подходящим в той или иной ситуации.

Понимание разных методов позволяет находить оптимальный вариант решения, что особенно важно в условиях ограниченного времени.

Все задачи на развитие логики можно разделить на группы:

  • Математические ребусы;
  • Задачи на истинность утверждений;
  • Задачи на перемещение, взвешивание или переливание;
  • Задачи, которые решаются с конца;
  • Работа с множествами;
  • Задачи на сопоставление «Кто есть кто?»

Выбор способа решения зависит от того, к какой группе относится задание.

Известные техники решения логических задач

  1. Табличный метод (таблицы соответствий, истинности, совмещенные, кубические):
    таблицы создают наглядность, прозрачность рассуждений, помогают сделать верные выводы.
  2. Применение законов из алгебры логики: вводятся обозначения для простых высказываний и преобразовываются в некую формулу.
  3. Метод рассуждений: подходит для решения простых задач с небольшим количеством объектов. Последовательное рассуждение над каждым условием задачи приводит к правильному выводу.
  4. Черчение блок-схем: способ, подходящий для решения задач на переливание, взвешивание.

    Рисуется схема, на которой отмечают последовательность действий и результат, полученный при их выполнении.

  5. Графический метод: подходит для решения задач на объединение или пересечение множеств. Самый популярный графический метод называется «Круги Эйлера».

    Нарисованная геометрическая схема наглядно показывает отношение между множествами.

  6. Метод «математический бильярд»: используется для решения задач на переливание жидкостей. Вычерчивается траектория движения бильярдного шара, который отталкивается от бортов стола в форме параллелограмма.

Рассмотрим подробно самые распространенные способы, которые могут использовать в решении логических задач ученики начальных классов:

Табличный метод
Условия задачи и результаты записываем в специальную таблицу. На пересечении строк и столбцов ставим «+», если утверждения не противоречат друг другу и «-», если они расходятся.

Задача:

У Сони, Маши, Антона, Кости и Юры есть домашние животные. У каждого из ребят живет или собака, или кошка, или попугай. Вот только девочки собак не держат, а у мальчиков нет попугаев. У Сони и Маши разные питомцы, а вот у Маши с Антоном – одинаковые. У Сони нет кошки. У Кости с Юрой живут одинаковые животные, а у Антона с Костей – разные. Какие животные живут у каждого?

Решение:

Чертим таблицу, где названия столбцов – имена ребят, а названия строк – животные. Ставим в каждой ячейке знаки «+» или «-», опираясь на условия задачи:

1. Девочки собак не держат (ставим «-» на пересечении этих ячеек).2. У мальчиков нет попугаев (в этих ячейках тоже ставим «-»).3. У Сони нет кошки (ставим «-»).4. Значит, у Сони есть попугай (ставим «+»).5. У Сони и Маши разные питомцы. Получается, у Маши нет попугая (ставим «-»), зато есть кошка (ставим «+»).6.

У Маши с Антоном одинаковые животные. Значит, у Антона тоже живет кошка (ставим «+») и нет собаки (ставим «-»).7. У Антона с Костей разные питомцы, выходит, что у Кости нет кошки (ставим «-»), зато есть собака (ставим «+»).

8.

У Кости с Юрой одинаковые животные, значит у Юры тоже собака (ставим «+»), а не кошка (ставим «-»).

Так мы узнали, какие питомцы живут у каждого из ребят (ячейки со знаком «+»).

Ответ: У Сони попугай, у Маши и Антона кошки, у Кости и Юры собаки.

Круги Эйлера
Чтобы было легче разобраться в условиях задачи и найти решение, чертим круги, каждый из которых – отдельное множество.

Задача:

Всему классу задали на лето читать книжки. В списке литературы были такие произведения, как «Робинзон Крузо» Даниэля Дефо и «Белый клык» Джека Лондона. Известно, что 15 человек из класса прочитали «Робинзон Крузо», а остальные 11 – «Белый клык». Но среди них были 6 ребят, которые прочитали обе книги. Сколько человек прочитало только «Белый клык»?

Решение:

Чертим два круга, каждый из которых – множество детей, прочитавших определенную книгу, а пересечение кругов – дети, прочитавшие обе книги.

1. 15 – 6 = 9 – дети, которые прочитали только «Робинзон Крузо».
2. 11 – 6 = 5 – дети, которые читали лишь «Белый клык».

Ответ: 5 человек.

Метод рассуждений
Поочередно рассматриваем каждое из условий задачи и делаем логические выводы.

Задача:
На столе стоят вазы: голубая, зеленая, розовая и оранжевая. Третьей в ряду стоит та ваза, название цвета которой содержит больше всего букв. А зеленая стоит между оранжевой и розовой. Какая ваза стоит последней?

Решение:

1. Больше всего букв в слове «оранжевая», значит она третья по счету.2. Если зеленая ваза стоит между оранжевой и розовой, значит, она будет второй в ряду, так как если ее поставить четвертой, то не останется места для розовой.3. Соответственно, розовая будет стоять первой.

4. Остается голубая, она будет четвертой, то есть последней.

Ответ: голубая ваза.

Метод рассуждений «с конца»
Начинаем раскручивать клубок с конца, а затем сопоставляем результат с условиями задачи.

Задача:

Маме, папе и сыну вместе 125 лет. Когда родился сын, маме был 21 год. А папа старше мамы на 2 года. Сколько лет сейчас каждому из них?

Решение:

1. 21+2= 23 — было папе ( значит вместе родителям было 44 года)2. (125 — 44) : 3 = 27 — возраст сына3. 27 + 21 = 48 — возраст мамы

4. 48 + 2 = 50 — возраст папы

Ответ: 27, 48 и 50 лет.

Мы рассмотрели самые популярные и доступные методы, с помощью которых можно легко справиться с заданием. Главное – подобрать подходящий способ решения, который быстро приведет к правильному результату.

Для этого необходимо регулярно практиковаться и развивать свои способности. Отточить навыки решения подобных логических задач и многих других вы можете с помощью образовательной онлайн-платформы «Умназия».

Попробуйте решить вместе с ребенком задачу из раздела «логика» и переходите к регулярным занятиям на тренажере

Поробуйте решить задачу Умназии прямо сейчас!

Попробовать

Математика

Умназисты соревновались в поедании пирожков. Соревнование длилось ровно 45 минут. За это время все соревнующиеся в сумме съели 179 пирожков.

Посмотри на информацию о соревнующихся на рисунке. Можешь ли ты сказать, кто из умназистов занял почётное третье место?

Выбери ответ:

Третье место заняла Ума Коала.

Третье место занял Мышлен.

Третье место занял Грамотигр.

Третье место занял Ква-Квариус.

Третье место заняла Сообразебра.

ответить

Логика решения:

Мы знаем, что Мышлен ел по 1 пирожку в минуту, значит за 45 минут соревнования он съел 45 пирожков (1 х 45 = 45).

Если Мышлен съел на 10 пирожков больше, чем Сообразебра, то Сообразебра съела 35 пирожков (45 – 10 = 35).

Если Ума-Коала съела на 5 пирожков меньше, чем Сообразебра, то Ума-Коала съела 30 пирожков (35 – 5 = 30).

Чтобы выяснить, сколько съели Грамотигр и Ква-Квариус, сложим все пирожки, которые съели Мышлен, Ума-Коала и Сообразебра. Получается 45 + 35 + 30 = 110 пирожков.

От общего количества съеденных пирожков вычтем съеденное тремя умназистами: 179 – 110 = 69. Значит, Ква-Квариус и Грамотигр вместе съели 69 пирожков.

Из условия мы знаем, что Грамотигр съел пирожков в 2 раза больше, чем Ква-Квариус.

Допустим, Ква-Квариус съел 23 пирожка, тогда Грамотигр съел в два раза больше, то есть 23 х 2 = 46 пирожков.

Теперь снова сложим их пирожки, чтобы проверить себя: 23 + 46 = 69. Сходится.

Значит, Грамотигр (46 пирожков) занял первое место, Мышлен (45 пирожков) – второе, а Сообразебра (35 пирожков) – третье.

Если вам понравилось, было весело интересно и полезно, то ждем вас на нашей онлайн платформе!
Умназия сегодня — это:

1. Онлайн тренажер развития навыков мышления — логики, внимания, эрудиции.
2. Программа «Культурный код» по развитию кругозора. Для самых любознательных и тех, кого кажется уже ничем не удивить!
3. Курсы развития памяти.

Хотите чтобы Ваш ребенок без труда учил стихи, запоминал иностранные слова и всегда помнил про день рождения бабушки? На курсах покажем и расскажем как же этого достичь.
4. Пять ступеней финансовой грамотности. Увлекательная история героя, которая полностью зависит от действий ребенка и не имеет определенного результата.

Сможет ли он пройти все финансовые ловушки и освоить пятую ступень?

Ждем вас, будет весело и интересно!

Попробуйте все наши курсы бесплатно!

Мы предлагаем более 20 курсов и 4 000 авторских задач по школьным предметам, навыкам мышления и важнейшим темам!

начать заниматься

Источник: https://umnazia.ru/blog/all-articles/kak-reshat-logicheskie-zadachi-primery

Ваш педагог
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: