Стереометрия: расстояния в пространстве. Часть 5. Параллелепипед (ЕГЭ,В9)

Самая удобная и увлекательная подготовка к ЕГЭ

Стереометрия: расстояния в пространстве. Часть 5. Параллелепипед (ЕГЭ,В9)

  • Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не имеют общих точек.
  • Если две прямые на плоскости перпендикулярны к третьей прямой, то они параллельны.
  • Если две прямые в трехмерном пространстве перпендикулярны к одной плоскости, то они параллельны.
  • Если прямая a, не лежащая в плоскости $α$, параллельна некоторой прямой $b$, которая лежит в плоскости $α$, то прямая a параллельна плоскости $α$.
  • Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым, лежащим в другой плоскости, то такие плоскости параллельны.
  • Две прямые называются перпендикулярными, если угол между ними равен $90°$.
  • Прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости.
  • Если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то заданные плоскости перпендикулярны.
  • Теорема о трех перпендикулярах: если прямая, проведенная на плоскости через основание наклонной, перпендикулярна ее проекции, то она перпендикулярна и самой наклонной.
  • Если из одной точки проведены к плоскости перпендикуляр и наклонные, то:
  1. Перпендикуляр короче наклонных.
  2. Равные наклонные имеют равные проекции на плоскости.
  3. Большей наклонной соответствует большая проекция на плоскости.
  • Если одна из двух прямых лежит на плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещиваются.
  • Через две скрещивающиеся прямые проходит единственная пара параллельных плоскостей.
  • Расстояние между скрещивающимися прямыми – это расстояние от некоторой точки одной из скрещивающихся прямых до плоскости, проходящей через другую прямую параллельно первой прямой.
  • Угол между скрещивающимися прямыми – это острый угол между двумя пересекающимися прямыми, которые соответственно параллельны заданным скрещивающимся прямым.

Введем общие обозначения

$P_{осн}$ – периметр основания;

$S_{осн}$ – площадь основания;

$S_{бок}$ – площадь боковой поверхности;

$S_{п.п}$ – площадь полной поверхности;

$V$ – объем фигуры.

Название Определение и свойства фигурыОбозначения и формулы объема, площади
Прямоугольный параллелепипед1. Все двугранные углы прямоугольного параллелепипеда – прямые. 2. Противоположные грани попарно равны и параллельны. 3. Диагонали прямоугольного параллелепипеда равны. 4. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений (длины, ширины, высоты).$B_1D2=AD2+DC2+C_1C2$$V=a·b·c$, где $a, b$ и $с$ – длина, ширина и высота. $S_{бок}=P_{осн}·c=2(a+b)·c$$S_{п.п}=2(ab+bc+ac)$.
Куб1. Противоположные грани попарно параллельны. 2. Все двугранные углы куба – прямые. 3. Диагональ куба в $√3$ раз больше его ребра. $B_1 D=АВ√3$ 4. Диагональ грани куба в $√2$ раза больше длины ребра.$DС1=DC√2$Пусть $а$ – длина ребра куба, $d$ – диагональ куба, тогда справедливы формулы: $V=a3={d3}/{3√3}$. $S_{п.п}=6а2=2d2$ $R={a√3}/{2}$, где $R$ – радиус сферы, описанной около куба.$r={a}/{2}$, где $r$ – радиус сферы, вписанной в куб.
ПризмаПризма – это многогранник, состоящий из двух равных многоугольников, расположенных в параллельных плоскостях, и $n$-го количества параллелограммов.
  1. Если боковые ребра призмы перпендикулярны к основаниям, то призма называется прямой, в противном случае – наклонной. Высота прямой призмы равна ее боковому ребру.
  2. Прямая призма называется правильной, если ее основания – правильные многоугольники.
  3. В правильной четырехугольной призме диагонали точкой пересечения делятся пополам.
$S_{бок}=P_{осн}·h$ $S_{п.п}=S_{бок}+2S_{осн}$$V=S_{осн}·h$
Пирамида
  1. У треугольной пирамиды есть еще одно название – тетраэдр (четырехгранник).
  2. Пирамида называется правильной, если в ее основании лежит правильный многоугольник, а ее высота приходит в центр основания (в центр описанной окружности). Все боковые ребра правильной пирамиды равны, следовательно, все боковые грани являются равнобедренными треугольниками.
Формулы вычисления объема и площади поверхности правильной пирамиды. $h_a$ – высота боковой грани (апофема) $S_{бок}={P_{осн}·h_a}/{2}$ $S_{п.п}=S_{бок}+S_{осн}$$V={1}/{3} S_{осн}·h$
Усеченная пирамида
  1. Усеченной пирамидой называется многогранник, заключенный между пирамидой и секущей плоскостью, параллельной.
  2. Правильная усечённая пирамида получается при сечении правильной пирамиды плоскостью, параллельной основанию.
  3. У правильной усеченной пирамиды апофемы равны
$V={h(F+f+√{Ff})}/{3}$ Где $F,f$ – площади оснований; $h$ – высота (расстояние между основаниями);Для правильной ус. пирамиды $S_{бок}={(P+p)·a}/{2}$, где $P$ и $p$ – периметры оснований; $а$ – апофема.
Цилиндр
  1. Осевое сечение цилиндра – это прямоугольник, у которого одна сторона равна диаметру основания, а вторая – высоте цилиндра.
  2. Если призму вписать в цилиндр, то ее основаниями будут являться равные многоугольники, вписанные в основание цилиндра, а боковые ребра – образующими цилиндра.
  3. Если цилиндр вписан в призму, то ее основания – равные многоугольники, описанные около оснований цилиндра. Плоскости граней призмы касаются боковой поверхности цилиндра.
  4. Если в цилиндр вписана сфера, то радиус сферы равен радиусу цилиндра и равен половине высоты цилиндра.$R_{сферы}=R_{цилиндра}={h_{цилиндра}}/{2}$
$S_{бок.пов.}=2πR·h$ $S_{полной.пов.}=2πR(R+h)$$V=πR2·h$
Конус
  1. Осевым сечением конуса является равнобедренный треугольник, основание которого равно двум радиусам, а боковые стороны равны образующим конуса.
  2. Если боковая поверхность конуса – полукруг, то осевым сечением является равносторонний треугольник, угол при вершине равен $60°$.
  3. Если радиус или диаметр конуса увеличить в $n$ раз, то его объем увеличится в $n2$ раз.
  4. Если высоту конуса увеличить в m раз, то объем конуса увеличится в то же количество раз.
$S_{бок.пов.}=πR·l$ $S_{полной.пов.}=πR2+πR·l=πR(R+l)$$V={πR2·h}/{3}$
Усеченный конус
  1. Усеченным конусом называется часть конуса, заключенная между основанием и секущей плоскостью, параллельной основанию.
  2. Осевым сечением усеченного конуса является равнобедренная трапеция.
$S_{бок}=πl(R+r)$ $S_{п.п.}=π(R2+r2+l(R+r))$$V={πH(R2+r2+Rr)}/{3}$Где $R$ и $r$ – радиусы оснований; $Н$ – высота усеченного конуса.
Сфера, шар
  1. Тело, ограниченное сферой, называется шаром.
  2. Осевое сечение шара это круг, радиус которого равен радиусу шара. Осевым сечением является самый большой круг шара.
  3. Если радиус или диаметр шара увеличить в $n$ раз, то площадь поверхности увеличится в $n2$ раз, а объем в $n3$ раз.
$S_{п.п}=4π·R2=π·d2$, где $R$ – радиус сферы, $d$ – диаметр сферы $V={4π·R3}/{3}={π·d3}/{6}$, где $R$ – радиус шара, $d$ – диаметр шара.

Тетраэдр

Радиус описанной сферы тетраэдра.

Вокруг тетраэдра можно описать сферу, радиус которой находим по формуле, где $R$ – радиус описанной сферы, $a$ – ребро тетраэдра.

$R={a√6}/{4}$

Радиус вписанной в тетраэдр сферы.

В тетраэдр можно вписать сферу, радиус вписанной сферы находим по формуле, приведенной ниже.

Где $r$ – радиус вписанной в тетраэдр сферы,

$a$ – ребро тетраэдра.

$r={a√6}/{12}$

Составные многогранники

Задачи на нахождение объема составного многогранника:

  1. Разделить составной многогранник на несколько параллелепипедов.
  2. Найти объем каждого параллелепипеда.
  3. Сложить объемы.

Задачи на нахождение площади поверхности составного многогранника.

– Если можно составной многогранник представить в виде прямой призмы, то находим площадь поверхности по формуле:

$S_{полн.пов.}=P_{осн}·h+2S_{осн}$

Чтобы найти площадь основания призмы, надо разделить его на прямоугольники и найти площадь каждого.

– Если составной многогранник нельзя представить в виде призмы, то площадь полной поверхности можно найти как сумму площадей всех граней, ограничивающих поверхность.

Пример:

Найдите площадь поверхности многогранника, изображённого на рисунке (все двугранные углы прямые).

Представим данный многогранник как прямую призму с высотой равной $12$.

$S_{полн.пов.}=P_{осн}·h+2S_{осн}$

$P_{осн}=8+6+6+2+2+4=28$

Чтобы найти площадь основания, разделим его на два прямоугольника и найдем площадь каждого:

$S_1=6·6=36$

$S_2=2·4=8$

$S_осн=36+8=44$

Далее подставим все данные в формулу и найдем площадь поверхности многогранника

$S_{полн.пов.}=28·12+2·44=336+88=424$

Ответ: $424$

– Если составной многогранник нельзя представить в виде призмы, то площадь полной поверхности можно найти как сумму площадей всех граней, ограничивающих поверхность.

Задачи на нахождение расстояния между точками составного многогранника.

В данных задачах приведены составные многогранники, у которых двугранные углы прямые. Надо соединить расстояние между заданными точками и достроить его до прямоугольного треугольника. Далее остается воспользоваться теоремой Пифагора для нахождения нужной стороны.

Теорема Пифагора

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

$АС2+ВС2=АВ2$

Задачи на нахождение угла или значения одной из тригонометрических функций обозначенного в условии угла составного многогранника.

Так как в данных задачах приведены составные многогранники, у которых все двугранные углы прямые, то достроим угол до прямоугольного треугольника и найдем его значение по тригонометрическим значениям.

Соотношение между сторонами и углами в прямоугольном треугольнике:

В прямоугольном треугольнике $АВС$, с прямым углом $С$:

Для острого угла $В: АС$ – противолежащий катет; $ВС$ – прилежащий катет.

Для острого угла $А: ВС$ – противолежащий катет; $АС$ – прилежащий катет.

  1. Синусом ($sin$) острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
  2. Косинусом ($cos$) острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
  3. Тангенсом ($tg$) острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему катету.

Значения тригонометрических функций некоторых углов:

$α$$30$$45$$60$
$sinα$${1}/{2}$${√2}/{2}$${√3}/{2}$
$cosα$${√3}/{2}$${√2}/{2}$${1}/{2}$
$tgα$${√3}/{3}$$1$$√3$
$ctgα$$√3$$1$${√3}/{3}$

Связь между сторонами правильного n-угольника и радиусами описанной и вписанной окружностей

$АВ=a_n$ – сторона правильного многоугольника

$R$ – радиус описанной окружности

$r$ – радиус вписанной окружности

$n$ – количество сторон и углов

$a_n=2·R·sin{180°}/{n}$;

$r=R·cos{180°}/{n}$;

$a_n=2·r·tg{180°}/{n}$.

Формула нахождения градусной меры угла в правильном многоугольнике:

$α={(n-2)·180°}/{n}$

В основании лежит треугольник

1. $S={a·h_a}/{2}$, где $h_a$ – высота, проведенная к стороне а

2. $S={a·b·sin⁡α}/{2}$, где $a, b$ – соседние стороны, $α$ – угол между этими соседними сторонами.

3. $S=p·r$, где $r$ – радиус вписанной окружности

4. $S={a·b·c}/{4R}$, где $R$ – радиус описанной окружности

5. Для прямоугольного треугольника $S={a·b}/{2}$, где $а$ и $b$ – катеты прямоугольного треугольника.

Прямоугольник

$S=a·b$, где $а$ и $b$ – смежные стороны.

Ромб

$S={d_1·d_2}/{2}$, где $d_1$ и $d_2$ – диагонали ромба

$S=a2·sin⁡α$, где $а$ – длина стороны ромба, а $α$ – угол между соседними сторонами.

Трапеция

$S={(a+b)·h}/{2}$, где $а$ и $b$ – основания трапеции, $h$ – высота трапеции.

Площади правильных многоугольников:

1. Для равностороннего треугольника $S={a{2}√3}/{4}$, где $а$ – длина стороны.

2. Квадрат

$S=a2$, где $а$ – сторона квадрата.

3. Правильный шестиугольник

Шестиугольник разделим на шесть правильных треугольников и найдем площадь как:

$S=6·S_{треугольника}={6·a{2}√3}/{4}={3·a{2}√3}/{2}$, где $а$ – сторона правильного шестиугольника.

Источник: https://examer.ru/ege_po_matematike/teoriya/shar_konus_cillindr

Как подготовиться к решению заданий ЕГЭ № 14 по стереометрии | 1С:Репетитор

Стереометрия: расстояния в пространстве. Часть 5. Параллелепипед (ЕГЭ,В9)
Как показывают результаты профильного экзамена по математике, задачи по геометрии — в числе самых сложных для выпускников. Тем не менее, решить их, хотя бы частично, а значит заработать дополнительные баллы к общему результату возможно.

Для этого необходимо, конечно, знать достаточно много о «поведении» геометрических фигур и уметь применять эти знания для решения задач. Здесь мы постараемся дать некоторые рекомендации, как подготовиться к решению задачи по стереометрии.

Эта задача обычно состоит из двух частей:

  • доказательной, в которой вас попросят доказать некоторое утверждение для заданной конфигурации геометрических тел;
  • вычислительной, в которой нужно найти некоторую величину, опираясь на то утверждение, которое вы доказали в первой части задачи.

    За решение данной задачи на экзамене по математике в 2018 году можно получить максимум два первичных балла. Допускается решить только «доказательную» или только «вычислительную» часть задачи и заработать в этом случае один первичный балл.

    Многие школьники на экзамене даже не приступают к решению задачи №14, хотя она значительно проще, например, задачи № 16 — по планиметрии

    В задачу № 14 традиционно включается лишь несколько вопросов из всех возможных для стереометрических задач:   

  • нахождение расстояний в пространстве;   
  • нахождение углов в пространстве;   
  • построение сечения многогранников плоскостью;   
  • нахождение площади этого сечения или объемов многогранников, на которые эта плоскость поделила исходный многогранник.
    В соответствии с этими вопросами строится и подготовка к решению задачи.

    Сначала, разумеется, нужно выучить все необходимые аксиомы и теоремы, которые понадобятся для доказательной части задачи. Помимо того, что знание аксиом и теорем поможет вам на экзамене непосредственно при решении задачи, их повторение позволит систематизировать и обобщить ваши знания по стереометрии вообще, то есть создать из этих знаний некую целостную картину.

    Итак, что же нужно выучить?   

  • Способы задания плоскости в пространстве, взаимное расположение прямых и плоскостей в пространстве.   
  • Определения, признаки и свойства параллельных прямых и плоскостей в пространстве.   
  • Определения, признаки и свойства перпендикулярных прямых и плоскостей в пространстве.

    После того как вы повторили теорию, можно приступать к рассмотрению методов решения задач.

    В курсе «1C:Репетитор» представлены все необходимые материалы для подготовки: видеолекции с теорией, тренажеры с пошаговым решением задач, тесты для самопроверки, интерактивные модели, позволяющие ученикам 10-х и 11-х классов наглядно рассмотреть методы решения задач по стереометрии, в том числе на примерах задач ЕГЭ 2017 года.

    Мы рекомендуем решать задачи в такой последовательности:

    1. Углы в пространстве (между скрещивающимися прямыми, между прямой и плоскостью, между плоскостями);
    2. Расстояния в пространстве (между двумя точками, между точкой и прямой, между точкой и плоскостью, между скрещивающимися прямыми);
    3. Решение многогранников, то есть нахождение углов между ребрами и гранями, расстояний между ребрами, площадей поверхностей, объемов по заданным в условии задачи элементам;
    4. Сечения многогранников – методы построения сечений (например, метод следов) и нахождения площадей сечений и объемов получившихся после построения сечения многогранников (например, использование свойств перпендикулярной проекции и метод объемов).

    Для всех указанных типов задач существуют различные методы решения:

  • классический (основанный на определениях и признаках);
  • метод проекций;
  • метод замены точки;
  • метод объемов.
  • Эти методы нужно знать и уметь применять, так как есть задачи, которые довольно сложно решаются одним методом и гораздо проще — другим.

    При решении стереометрических задач более эффективным по сравнению с классическим методом нередко оказывается векторно-координатный. Классический метод решения задач требует отличного знания аксиом и теорем стереометрии, умения применять их на практике, строить чертежи пространственных тел и сводить стереометрическую задачу к цепочке планиметрических.

    Классический метод, как правило, быстрее приводит к искомому результату, чем векторно-координатный, но требует определенной гибкости мышления.

    Векторно-координатный метод представляет собой набор готовых формул и алгоритмов, но при этом требует более длительных расчетов; тем не менее, для некоторых задач, например, для нахождения углов в пространстве, он предпочтительнее классического.

    Многим абитуриентам не позволяет справиться со стереометрической задачей неразвитое пространственное воображение. В этом случае мы рекомендуем использовать для самоподготовки интерактивные тренажеры с динамическими моделями пространственных тел.

    Такие тренажеры есть на портале «1С:Репетитор» (для перехода к их использованию необходимо зарегистрироваться): работая с ними, вы не только сможете «выстроить» решение задачи «по шагам», но и на объемной модели увидеть все этапы построения чертежа в различных ракурсах.

    С помощью таких же динамических чертежей мы рекомендуем учиться строить сечения многогранников.

    Кроме того, что модель автоматически проверит правильность вашего построения, вы сами сможете, рассматривая сечение с разных сторон, убедиться, верно или неверно оно построено, и если неправильно, то в чем именно ошибка.

    Построение сечения на бумаге, с помощью карандаша и линейки, конечно, таких возможностей не дает. Посмотрите пример построения сечения пирамиды плоскостью с использованием такой модели (Нажмите на картинку, что бы перейти к тренажеру):

    Последний вопрос, на который надо обратить внимание, — это нахождение площадей сечений или объемов, получившихся после построения сечения многогранников. Здесь также существуют подходы и теоремы, которые позволяют в общем случае существенно сократить трудозатраты на поиск решения и получение ответа. В курсе «1С:Репетитор» мы знакомим вас с этими приемами.

    Если вы следовали нашим советам, разобрались со всеми вопросами, которые здесь затронуты, и решили достаточное количество задач, то велика вероятность, что вы практически готовы к решению задачи по стереометрии на профильном ЕГЭ по математике в 2018 году. Дальше необходимо только поддерживать себя «в форме» до самого экзамена, то есть решать, решать и решать задачи, совершенствуя свое умение применять изученные приемы и методы в разных ситуациях. Удачи!

    Регулярно тренируйтесь в решении задач

    Чтобы начать заниматься на портале «1С:Репетитор», достаточно зарегистрироваться.
    Вы можете:

    • Начать заниматься бесплатно.
    • Получить доступ ко всей теории и тренажерам задачи №14. Это стоит всего 1 999 рублей.
    • Купить доступ к этой задаче в составе экспресс-курса «Геометрия» и научиться решать задачи №14 и №16 на максимальный балл.

    Все курсы состоят из методически правильной последовательности теории и практики, необходимой для успешного решения задач. Включают теорию в форме текстов, слайдов и видео, задачи с решениями, интерактивные тренажеры, модели, и тесты.

    Остались вопросы? Позвоните нам по телефону 8 800 551-50-78 или напишите в онлайн-чат.

    Здесь ключевые фразы, чтобы поисковые роботы лучше находили наши советы:
    Как решать задание 14 на экзамене ЕГЭ, задачи по геометрии, решение задач, по стереометрии, методы решения задач, тренажеры, видео, КИМ ЕГЭ 2017, подготовка к ЕГЭ, профиль математика, математика профильного уровня, решение задачи по наклонной треугольной призме, грани, взаимно перпендикулярно, общее ребро, плоскости, точки, ребро равно, боковая поверхность, решение задач на сечение многогранника, перпендикулярное сечение, вычислить объем фигуры, в основании прямой треугольной призмы лежит, признаки равенства и подобия треугольников, примеры решения задач ЕГЭ по геометрии, вычисление сечения, задачи по математике профильного уровня, применение методов сечения, решение задач на площадь, задачи ЕГЭ 2017 по стереометрии, подготовка к ЕГЭ, выпускникам 11 класса, в 2018 году, поступающим в технический вуз.

    Источник: https://repetitor.1c.ru/page/stereometry/

    Ваш педагог
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: