Свойства гидроксида калия и его кристаллогидратов

Содержание
  1. Гидроксид калия, характеристика, свойства и получение, химические реакции
  2. Краткая характеристика гидроксида калия:
  3. Физические свойства гидроксида калия:
  4. Получение гидроксида калия:
  5. Химические свойства гидроксида калия. Химические реакции гидроксида калия:
  6. Применение и использование гидроксида калия:
  7. Гидроксид калия
  8. Физические свойства
  9. Получение
  10. Ртутный метод
  11. Диафрагменные метод
  12. Мембранный метод
  13. Химические свойства
  14. Применение
  15. Гидроксид калия KOH раствор
  16. Физико-химические свойства
  17. Растворимость калия гидроксида в различных растворителях
  18. Свойства гидроксида калия и его кристаллогидратов – Химия
  19. Получение в лаборатории
  20. Получение в промышленности
  21. Пример решения задачи
  22. Гидроксид калия
  23. Производство
  24. Опасность
  25. Получение калия: способы, реакция, формулы, виды калия и его химические свойства
  26. Общая характеристика
  27. Получение металла
  28. Получение исходных веществ
  29. Получение производных
  30. Нитрат калия
  31. Карбонат калия
  32. Перманганат калия

Гидроксид калия, характеристика, свойства и получение, химические реакции

Свойства гидроксида калия и его кристаллогидратов

Гидроксид калия – неорганическое вещество, имеет химическую формулу KOH.

Краткая характеристика гидроксида калия

Физические свойства гидроксида калия

Получение гидроксида калия

Химические свойства гидроксида калия

Химические реакции гидроксида калия

Применение и использование гидроксида калия

Краткая характеристика гидроксида калия:

Гидроксид калия – неорганическое вещество белого цвета.

Химическая формула гидроксида калия KOН.

Обладает высокой гигроскопичностью, но меньшей чем у гидроксида натрия. Активно поглощает пары воды из воздуха.

Хорошо растворяется в воде, при этом выделяя большое количество тепловой энергии.

Гидроксид калия – едкое, токсическое и коррозионно-активное вещество. Оно относится к веществам второго класса опасности. Поэтому при работе с ним требуется соблюдать осторожность. При попадании на кожу, слизистые оболочки и в глаза образуются серьёзные химические ожоги.

Физические свойства гидроксида калия:

Наименование параметра:Значение:
Химическая формулаKOН
Синонимы и названия иностранном языкеpotassium hydroxide (англ.)едкое кали (рус.)калия гидроокись (рус.)
Тип веществанеорганическое
Внешний видбесцветные моноклинные кристаллы
Цветбелый, бесцветный
Вкус—*
Запах
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.)твердое вещество
Плотность (состояние вещества – твердое вещество, при 20 °C), кг/м32044-2120
Плотность (состояние вещества – твердое вещество, при 20 °C), г/см32,044-2,12
Температура кипения, °C1327
Температура плавления, °C380−406
Гигроскопичностьвысокая гигроскопичность
Молярная масса, г/моль56,1056

* Примечание:

— нет данных.

Получение гидроксида калия:

Гидроксид калия в промышленном масштабе получается в результате электролиза хлористого калия с твердым асбестовым катодом (диафрагменный метод производства), с полимерным катодом (мембранный метод производства), с жидким ртутным катодом (ртутный метод производства).

Основной тенденцией в мировом производстве гидроксида калия в последние 10 лет является переход производителей на мембранный метод электролиза.

Химические свойства гидроксида калия. Химические реакции гидроксида калия:

Гидроксид калия – химически активное вещество, сильное химическое основание.

Водные растворы KOH имеют сильную щелочную реакцию.

Химические свойства гидроксида калия аналогичны свойствам гидроксидов других щелочных металлов. Поэтому для него характерны следующие химические реакции:

1. реакция гидроксида калия с натрием:

KOH + Na → NaOH + K (t = 380-450 °C).

В результате реакции образуются гидроксид натрия и калий.

2. реакция гидроксида калия с хлором:

2KOH + Cl2 → KCl + KClO + H2O.

В результате реакции образуются хлорид калия, гипохлорит калия и вода. При этом гидроксид калия в качестве исходного вещества используется в виде холодного концентрированного раствора.

3. реакция гидроксида калия с йодом:

6KOH + 3I2 → 5KI + KIO3 + H2O (t = 80 °C).

В результате реакции образуются йодид калия, иодат калия и вода. При этом гидроксид калия в качестве исходного вещества используется в виде горячего концентрированного раствора.

4. реакция гидроксида калия с алюминием и водой:

2Al + 2KOH + 6H2O → 2K[Al(OH)4] + 3H2.

В результате реакции образуются тетрагидроксоалюминат калия и водород. При этом гидроксид калия в качестве исходного вещества используется в виде горячего концентрированного раствора.

5. реакция гидроксида калия с цинком и водой:

Zn + 2KOH + 2H2O → K2[Zn(OH)4] + H2.

В результате реакции образуются тетрагидроксоцинкат натрия и водород.

6. реакция гидроксида калия с ортофосфорной кислотой:

H3PO4 + KOH → KH2PO4 + H2O.

В результате реакции образуются дигидроортофосфат калия и вода. При этом в качестве исходных веществ используются: фосфорная кислота в виде концентрированного раствора, гидроксид калия в виде разбавленного раствора.

Аналогично проходят реакции гидроксида калия и с другими кислотами.

7. реакция гидроксида калия с сероводородом:

H2S + KOH → KHS + H2O.

В результате реакции образуются гидросульфид калия и вода. При этом гидроксид калия в качестве исходного вещества используется в виде разбавленного раствора.

8. реакция гидроксида калия с фтороводородом:

HF + KOH → KF + H2O,

2HF + KOH → KHF2 + H2O.

В результате реакции образуются в первом случае – фторид калия и вода, во втором – гидрофторид калия и вода. При этом гидроксид калия и фтороводород в первом случае в качестве исходного вещества используются в виде разбавленного раствора, во втором случае гидроксид калия и фтороводород используются в виде в виде концентрированного раствора.

9. реакция гидроксида калия с бромоводородом:

HBr + KOH → KBr + H2O.

В результате реакции образуются бромид калия и вода.

10. реакция гидроксида калия с йодоводородом:

HI + KOH → KI + H2O.

В результате реакции образуются йодид калия и вода.

11. реакция гидроксида калия с оксидом алюминия:

Al2O3 + 2KOH → 2KAlO2 + H2O (t = 900-1100 °C).

Оксид алюминия является амфотерным оксидом. В результате реакции образуются алюминат калия и вода. Реакция протекает при спекании исходных веществ.

12. реакция гидроксида калия с оксидом алюминия и водой:

Al2O3 + 2KOH + 3H2O → 2K[Al(OH)4].

Оксид алюминия является амфотерным оксидом. В результате реакции образуется тетрагидроксоалюминат калия. При этом гидроксид калия в качестве исходного вещества используется в виде горячего концентрированного раствора.

13. реакция гидроксида калия с оксидом углерода (углекислым газом):

KOH + CO2 → KHCO3,

2CO3 + KOH → KCO3 + H2O.

Оксид углерода является кислотным оксидом. В результате реакции образуются в первом случае – гидрокарбонат калия, во втором случае – карбонат калия и вода. Реакция в первом случае происходит в этаноле.

14. реакция гидроксида калия с оксидом серы:

SO2 + KOH → KHSO3,

2SO3 + KOH → K2SO3 + H2O.

Оксид серы является кислотным оксидом. В результате реакции образуются в первом случае – гидросульфит калия, во втором случае – сульфит калия и вода. Реакция в первом случае происходит в этаноле.

15. реакция гидроксида калия с оксидом кремния:

4KOH + 2SiO2 → K2SiO3 + K2Si4O5 + 2H2O (t = 900-1000 °C),

6KOH + 5SiO2 → K4SiO4 + K2Si4O9 + 3H2O.

В результате реакции образуются в первом случае – метасиликат калия, метатетрасиликат калия и вода, вот втором случае – ортосиликат калия, тетрасиликат калия и вода. При этом гидроксид калия в качестве исходного вещества используется во втором случае в виде концентрированного раствора.

16. реакция гидроксида калия с гидроксидом алюминия:

Al(OH)3 + KOH → KAlO2 + 2H2O (t = 1000 °C),

Al(OH)3 + KOH → K[Al(OH)4].

Гидроксид алюминия является амфотерным основанием. В результате реакции образуются в первом случае – алюминат калия и вода, во втором случае – тетрагидроксоалюминат натрия.  При этом гидроксид калия в качестве исходного вещества используется во втором случае в виде концентрированного раствора.

17. реакция гидроксида калия с гидроксидом цинка:

Zn(OH)2 + 2KOH → K2[Zn(OH)4].

Гидроксид цинка является амфотерным основанием. В результате реакции образуется тетрагидроксоцинкат калия.

18. реакция гидроксида калия с сульфатом железа:

FeSO4 + 2KOH → Fe(OH)2 + K2SO4.

В результате реакции образуются гидроксид железа и сульфат калия.

19. реакция гидроксида калия с хлоридом меди:

CuCl2 + 2KOH → Cu(OH)2 + 2KCl.

В результате реакции образуются гидроксид меди и хлорид калия.

20. реакция гидроксида калия с хлоридом алюминия:

AlCl3 + 3KOH → Al(OH)3 + 3KCl.

В результате реакции образуются гидроксид алюминия и хлорид калия.

Аналогично проходят реакции гидроксида калия и с другими солями. 

Применение и использование гидроксида калия:

Гидроксид калия используется во множестве отраслей промышленности и для бытовых нужд:

– в целлюлозно-бумажной промышленности – в производстве бумаги, картона, искусственных волокон, древесно-волоконных плит;

– для омыления жиров при производстве мыла, шампуня и других моющих средств;

– в химической и нефтехимической отраслях промышленности – как универсальное химическое соединение;

– для изготовления биодизельного топлива – получаемого из растительных масел и используемого для замены обычного дизельного топлива;

– в пищевой промышленности: для мытья и очистки фруктов и овощей от кожицы, в качестве регулятора кислотности. Зарегистрирован в качестве пищевой добавки E-525;

– в щелочных (алкалиновых) батарейках – в качестве электролита;

– в фотографии.

Примечание: © Фото //www.pexels.com, //pixabay.com

Источник: https://xn--80aaafltebbc3auk2aepkhr3ewjpa.xn--p1ai/gidroksid-kaliya-harakteristika-svoystva-i-poluchenie-himicheskie-reaktsii/

Гидроксид калия

Свойства гидроксида калия и его кристаллогидратов

Гидроксид калия, калий гидроксид — неорганическое соединение ряда гидроксидов состава KOH. Белые, очень гигроскопичные кристаллы, но гигроскопичность меньше, чем в гидроксида натрия. Водные растворы КОН имеют сильнощелочную реакцию.

Гидроксид получают электролизом растворов KCl. Вещество применяются в производстве стекла, жидкого мыла, для получения различных соединений калия.

Физические свойства

Гидроксид калия являются белыми, почти прозрачными ромбическими кристаллами, которые легко поглощают влагу из воздуха и образуют ряд гидратов: KOH · 4H 2 O, KOH · 2H 2 O, KOH · H 2 O, KOH · 0,5H 2 O.

KOH легко розчиняется в воде, спиртах (55 г в 100 г метанола; примерно 14 г в 100 г изопропанола), эфира.

Растворимость KOH в воде
Температура, ° C 0 10 20 25 30 40 50 60 70 80 90 100
Растворимость,% 48,7 50,8 53,2 54,7 56,1 57,9 58,6 59,5 60,6 61,8 63,1 64,6

Получение

Исторически КОН получали из растворов поташа (карбоната калия), который добывали из древесной золы, и гашеной извести (гидроксида кальция). В результате реакции метатезы в осадок выпадает мало растворим карбонат кальция, оставляя гидроксид калия в растворе:

Современным методом получения гидроксида является электролиз водного раствора хлорида калия (иногда также карбоната калия), который широко распространен в минералах Сильвин, карналлите.

Аналогично способов получения гидроксида натрия, применяются ртутный, диафрагменные и мебранная метода электролиза, однако существенно большее значение имеет ртутный метод — он позволяет получать практически чистые растворы KOH концентрацией до 50%.

Полная дегидратация для получения абсолютно безводного гидроксида калия не проводится из-за большого ресурсоемкость этого процесса. Максимально безводным считается гидроксид калия с содержанием воды 5-10% — имеется вода связана в моногидрат KOH · H 2 O, который разлагается только при 550 ° C.

Ртутный метод

В ртутном методе применяется особо чистый раствор хлорида калия, потому что даже незначительные примеси металлов (хрома, вольфрама, молибдена, ванадия), вплоть до миллионных долей, могут привести к появлению побочных процессов на катоде.

В водном растворе хлорид калия распадается на ионы и ионы K + мигрируют к ртутного катода (жидкая ртуть в железной трубке), где образуют жидкие амальгамы переменного состава:

Амальгамы выделяются из реакционной системы и переводятся в другую, где происходит разложение их водой с образованием гидроксида калия:

По этому методу образуется раствор KOH концентрацией более 50% и практически свободен от загрязняющих примесей (хлора, хлорида калия). Дальнейшее концентрирование раствора происходит путем упаривания в вакууме при высокой температуре. Образована в результате разложения ртуть возвращается в электрод.

На аноде (графитовом или другом) происходит окисление хлорид-ионов с образованием свободного хлора

Диафрагменные метод

В диафрагменного методе пространство между катодом и анодом разъединен перегородкой, которая не пропускает растворы и газы, однако не препятствует прохождению электрического тока и миграции ионов. Обычно, в качестве таких перегородок используется асбестовая ткань, пористые цементы, фарфор и т.

В анодный пространство подается раствор KCl: на аноде (графитовом или магнетитовых) восстанавливаются хлорид-ионы, а катионы K + (и, частично, анионы Cl -) мигрируют сквозь диафрагму к катодной пространства. Там катионы где сочетаются с гидроксид-ионами, образованными восстановлением воды на железном или медном катоде:

С катодной пространства в результате выделяется смесь гидроксида и хлорида натрия с содержанием KOH 8-10%. Путем испарения удается увеличить концентрацию гидроксида до 50%, но содержание хлорида все равно остается существенным — около 1,0-1,5%. Дальнейшая очистка является экономически нецелесообразным.

Мембранный метод

Мембранный метод считается наиболее совершенным из существующих, но, в то же время, и наиболее энергоемким.

По этому методу в реакторе устанавливается катионообменная мембрана, которая является проницаемой для ионов K +, движущихся в катодный пространство, и подавляет миграцию гидроксид-ионов, движущихся в обратном направлении — таким образом в катодном пространстве увеличивается концентрация составляющих KOH. По этому методу образуется раствор гидроксида концентрацией 32%, а последующим выпаривания это значение удается повысить до 45-50%.

Хлорид калия при этом теоретически не образуется, но проникновение хлорид-ионов через мембрану все же имеет место — в конечном растворе концентрация KCl составляет около 10-50 миллионных долей.

Химические свойства

Гидроксид калия активно поглощает из воздуха влагу, образуя гидраты различного состава, которые разлагаются при нагревании:

Взаимодействует с кислотами и кислотными оксидами, образуя соответствующие соли калия:

Также взаимодействует с амфотерными оксидами и гидроксидами:

При пропускании через раствор гидроксида галогенов, образуется смесь солей: галогенид и, в зависимости от температуры раствора, гипогалогенит или галогенат:

Кроме галогенов, KOH реагирует также с фосфором, серой:

KOH окисляется озоном до озониду калия:

При восстановлении пероксидом водорода с последующей дегидратацией образуется пероксид калия:

Гидроксид поглощает CO 2 и SO 2, а в этаноле образует малорастворимые соединения:

При нагревании реагирует также с деякимим металлами:

Взаимодействует с солями, которые соответствуют слабым основам:

Применение

  • В качестве электролита в щелочных аккумуляторах (например, никель-кадмиевых элементах).
  • Для получения жидкого мыла — при взаимодействии гидроксида калия с пальмитиновой и стеариновой кислотами образуются жидкие аддукты.
  • Для мерсеризации древесной целлюлозы в процессе получения вискозных волокон и нитей.
  • Для обработки хлопчатобумажных тканей с целью повышения гигроскопичности.
  • Как абсорбент «кислых» газов (сероводорода, диоксида серы, углекислого газа и т.п.).
  • Как осушительный агент для газов, которые не взаимодействуют с KOH, например, аммиака, закиси азота N 2 O, фосфина PH 3.
  • Как осушительный агент для жидкостей в синтетической органической химии;
  • Для определения концентрации кислот путем титрования.
  • Как агент против вспенивания при производстве бумаги.
  • Входит в состав бытовых средств для очистки посуды из нержавеющей стали.
  • Для анизотропного травления кристаллического кремния.

Источник: https://info-farm.ru/alphabet_index/g/gidroksid-kaliya.html

Гидроксид калия KOH раствор

Свойства гидроксида калия и его кристаллогидратов

Калия гидроксид (кали едкое, пищевая добавка Е525, гидроокись калия, калия гидрат окиси, каустический поташ) – едкая щелочь широкого спектра применения.

Технический гидрат окиси калия применяют для производства удобрений, синтетического каучука, электролитов для аккумуляторов, реактивов, ксантогенатов, солей, в медицинской промышленности и в других отраслях народного хозяйства

Физико-химические свойства

Гидроксид калия KOH – бесцветное кристаллическое вещество без запаха. Температура плавления 380°С. Температура кипения 1320°С. Плотность 2,12 г/см3.

Сильно гигроскопичен, на воздухе кристаллы расплываются вследствие поглощения влаги.

Разлагает материалы органического происхождения, водные растворыры корродируют стекло, расплавы – фарфор, платину; концентрированные растворы вызывают тяжёлые ожоги кожи и слизистых оболочек.

Растворимость калия гидроксида в различных растворителях

РастворительТемпература, °СРастворимость, г/100г растворителя
Этанол2838,7
Метанол2855
Вода097,6
10102,4
20112,4
25117,9
40135,3
60147,5
80162,5
100179,3
120206
140367

Свойства гидроксида калия и его кристаллогидратов – Химия

Свойства гидроксида калия и его кристаллогидратов

Неорганическое соединение.

Альтернативное название

Едкое кали, калия гидроокись

Формула

KOHKOHKOH

Получение в лаборатории

Гидроксид калия в лаборатории получают пропусканием раствора сульфата калия через анионит или взаимодействием раствора поташа K2CO3K_2CO_3K2​CO3​ и известковой воды Ca(OH)2Ca(OH)_2Ca(OH)2​:

K2CO3+Ca(OH)2=CaCO3↓+2KOHK_2CO_3 + Ca(OH)_2 = CaCO_3↓ + 2KOHK2​CO3​+Ca(OH)2​=CaCO3​↓+2KOH.

Получение в промышленности

Калия гидроксид получают электролизом водных растворов KClKClKCl или K2CO3K_2CO_3K2​CO3​ с железным катодом:

KCl+H2O=KOH+HCl.KCl + H_2O = KOH + HCl.KCl+H2​O=KOH+HCl.

Также его производят взаимодействием раствора поташа K2CO3K_2CO_3K2​CO3​ и известковой воды Ca(OH)2Ca(OH)_2Ca(OH)2​:

K2CO3+Ca(OH)2=CaCO3↓+2KOHK_2CO_3 + Ca(OH)_2 = CaCO_3↓ + 2KOHK2​CO3​+Ca(OH)2​=CaCO3​↓+2KOH

Пример решения задачи

Сколько водорода выделится при растворении избытка цинка в 1 л 50% раствора гидроксида калия (ρ=1,516
ho=1,516ρ=1,516 г/см3)?

Решение

Вес раствора

mp=ρV=1,516⋅1000=1516m_p=
ho V =1,516cdot1000 =1516mp​=ρV=1,516⋅1000=1516 г.

Вес KOHKOHKOH

mKOH=1516⋅50%/100%=758m_{KOH}=1516cdot50\%/100\% =758mKOH​=1516⋅50%/100%=758 г

758758758 г ext{г}г — xxx л ext{л}л

2KOH+Zn+2H2O=K2[Zn(OH)4]+H2↑2KOH + Zn + 2H_2O = K_2[Zn(OH)_4] + H_2↑2KOH+Zn+2H2​O=K2​[Zn(OH)4​]+H2​↑

2 моля — 1 моль

2⋅56,112cdot56,112⋅56,11 г ext{г}г — 22,422,422,4 л ext{л}л
112,22112,22112,22 г ext{г}г — 22,422,422,4 л ext{л}л

Составляем пропорцию:

112,22112,22112,22 г ext{г}г KOHKOHKOH — 22,422,422,4 л ext{л}л H2H_2H2​,

758758758 г ext{г}г KOHKOHKOH — xxx л ext{л}л H2H_2H2​.

Отсюда

x=758∗22,4112,22=567x=frac{758ast22,4}{112,22} = 567x=112,22758∗22,4​=567 г.

1 моль KOHKOHKOH – 74,55574,55574,555 г ext{г}г,

xxx молей KOHKOHKOH – 567567567 г ext{г}г.

Отсюда

x=567∗174,555=151,3x=frac{567ast1}{74,555} = 151,3x=74,555567∗1​=151,3 л.

Ответ: 151,3151,3151,3 л. ext{л}.л.

Гидроксид калия

Гидроксид калия, калий гидроксид — неорганическое соединение ряда гидроксидов состава KOH. Белые, очень гигроскопичные кристаллы, но гигроскопичность меньше, чем в гидроксида натрия. Водные растворы КОН имеют сильнощелочную реакцию.

Гидроксид получают электролизом растворов KCl. Вещество применяются в производстве стекла, жидкого мыла, для получения различных соединений калия.

Производство

В промышленном масштабе гидроксид калия получают электролизом хлористого калия.

Возможны три варианта проведения электролиза:

  • электролиз с твердым асбестовым катодом (диафрагменный метод производства),
  • электролиз с полимерным катодом (мембранный метод производства),
  • электролиз с жидким ртутным катодом (ртутный метод производства).

В ряду электрохимических методов производства самым легким и удобным способом является электролиз с ртутным катодом, но этот метод наносит значительный вред окружающей среде в результате испарения и утечек металлической ртути. Мембранный метод производства самый эффективный, но и самый сложный.

В то время как диафрагменный и ртутный методы были известны соответственно с 1885 и 1892 гг., мембранный метод появился сравнительно недавно — в 1970 гг.

Основной тенденцией в мировом производстве гидроксида калия в последние 10 лет является переход производителей на мембранный метод электролиза.

Ртутный электролиз является устаревшей, экономически невыгодной и негативно действующей на окружающую среду технологией. Мембранный электролиз полностью исключает использование ртути.

Экологическая безопасность мембранного метода заключается в том, что сточные воды после очистки вновь подаются в технологический цикл, а не сбрасываются в канализацию.

При использовании данного метода решаются следующие задачи:

  • исключается стадия сжижения и испарения хлора,
  • водород используется для технологического пара, исключаются газовые выбросы хлора и его соединений.

Мировым лидером в области мембранных технологий является японская компания «Асахи Касэй».

В России производство гидроксида калия осуществляется мембранным (ООО “Сода-Хлорат”) методом.

Особенностью технологического оформления производства гидроксида калия является тот факт, что на аналогичных установках электролиза можно выпускать как едкое кали, так и каустическую соду.

Это позволяет производителям без существенных капиталовложений переходить на производство гидроксида калия взамен каустической соды, производство которой не столь рентабельно, а сбыт в последние годы усложняется.

При этом в случае изменений на рынке возможен безболезненный перевод электролизёров на производство ранее выпускавшегося продукта.

Примером перевода части мощностей с производства гидроксида натрия на гидроксид калия может служить ОАО «Завод полимеров КЧХК», начавший промышленный выпуск едкого кали на пяти электролизерах в 2007 году.

Опасность

Очень сильная щёлочь. В чистом виде действует на кожу и слизистые оболочки прижигающим образом. Особенно опасно попадание даже малейших частиц гидроксида калия в глаза, поэтому все работы с этим веществом должны проводиться в резиновых перчатках и очках. Гидроксид калия разрушает бумагу, кожу и др. материалы органического происхождения.

Источник: https://chem.ru/gidroksid-kalija.html

Получение калия: способы, реакция, формулы, виды калия и его химические свойства

Свойства гидроксида калия и его кристаллогидратов

Калий (К) – это пятый по распространенности в природе металл.

Он расположен в 1 группе периодической системы химических элементов (ПСХЭ), поэтому относится к щелочным металлам и при смешивании с водой образует растворимые гидроксиды.

В виде простого вещества элемент имеет серебристо-белый цвет, иногда с фиолетовым оттенком. По характеристикам он мягкий и низкоплавкий. Получение калия возможно из его гидрида, гидроксида, хлорида, хромата или дихромата.

Общая характеристика

При превращении калия в пар сине-зеленого цвета он разлагается на атомы К, к которым примешивается небольшое количество молекул К2. Растворить металл можно в жидком аммиаке с получением стандартного темно-синего раствора либо в расплаве едкого кали.

https://www.youtube.com/watch?v=ILlFpI_j4Z8

Калий имеет высокую реакционную способность, обладает сильными восстановительными свойствами (его внешняя электронная оболочка находится на большом удалении от ядра, а в таблице электроотрицательности он занимает вторую позицию после цезия), реагирует не только с разбавленными кислотами, неметаллами, нитритом водорода и дигидросульфидом, но и с кислородом воздуха и водой. В последнем случае выделяющийся водород быстро воспламеняется.

Со ртутью элемент превращается в сплав – амальгаму. С натрием, таллием, оловом, свинцом и висмутом у калия образуются интерметаллиды, обладающие высокой твердостью и химической стойкостью. Химическое соединение нескольких металлов плавится при более высокой температуре, чем каждый из образующих его компонентов, но имеет меньшую пластичность по сравнению с ними.

Однако есть вещества, с которыми элемент практически не вступает в реакцию, например, к таким относится азот. Это одна из отличительных особенностей калия от других щелочных металлов, в первую очередь, лития и натрия. Кроме того, он не сплавляется с литием, магнием, цинком, кадмием, алюминием и галлием.

Калий хорошо сохраняется под слоем бензина и керосина. Определить его можно по окрашиванию пламени горелки в фиолетовый цвет.

Получение металла

Неорганическое соединение белого цвета, гидрид калия, образуется из расплавленного металла, но оно нестабильно и при температуре в 400 градусов Цельсия в вакууме распадается на составляющие по следующей реакции:

Гидроксид калия образуется из соответствующего хлорида. Он широко применяется в производстве жидких мыл и для получения калия и его соединений. Для этого нужно провести электролиз, то есть пропустить через раствор ток. В результате на аноде образуется кислород, а на катоде калий:

Из хлорида можно получать не только гидроксид, но и металл в чистом виде. Для этого также потребуется реакция электролиза раствора:

В отличие от предыдущего способа получения калия, в этом можно использовать исходное вещество не только в жидком состоянии, но и в виде расплава, но в этом случае происходят две параллельные реакции:

  1. 2KCl + 2Н2О = Н2 + Cl2 + 2КОН;
  2. 2KCl = 2К + Cl2.

Катод, на котором будет образовываться калий, должен быть ртутным.

Получение исходных веществ

Иногда применяются хромат или дихромат калия. Напрямую металл из них не получить, но можно преобразовать их в гидроксиды или хлориды, которые впоследствии подвергнуть электролизу по приведенным выше реакциям. Получение гидроксида калия из хромата происходит так:

  • 2K2CrO4 + 2Н2О + 3Н2S = 2Cr(ОН)3 + 3S + 4КОН.

Чтобы процесс прошел успешно, сера и гидроксид хрома выпали в осадок, нужно брать горячую воду. Подобную реакцию можно также провести с помощью дихромата. Она протекает аналогичным образом, различие наблюдается только в значениях стехиометрических коэффициентов:

  • К2Cr2О7 + Н2О + 3Н2S = 2Cr(ОН)3 + 3S + 2КОН.

При нагревании дихромата до 500 градусов Цельсия гидроксид можно получить другим способом:

  • К2Cr2О7 + 3Н2 = Cr2О3 + 2КОН + 2Н2О.

Есть и другие способы получения гидроксида. Например, с помощью реакции между поташом и насыщенным раствором гашеной извести.

Для получения хлорида калия из хромата реакции проводятся таким образом:

  • 2К2CrO4 + 2HCl = К2Cr2О7 + 2KCl + Н2О.

Соляная кислота берется в разбавленном виде. Получение калия хлора сопровождается выделением дихромата и воды.

Превратить дихромат в хлорид немного более сложно, для этого понадобится этиловый спирт и кипячение:

  • К2Cr2О7 + 8HCl + 2С2Н5ОН = 2CrCl3 + 3СН3С(Н)О + 7Н2О + 2KCl.

Получение калия хлора также возможно из поташа при взаимодействии с разбавленной соляной кислотой и из сульфата при реакциях с галогенидом бария.

Гидроксид и хлорид легко преобразуются друг в друга с помощью электролиза или при добавлении соответствующего галогенида.

Получение производных

Получение солей калия играет не менее важную роль, чем образование чистого металла. Несмотря на высокую стоимость, они используются в гальванотехнике, так как обеспечивают интенсивную работу электролитов при повышенной плотности тока. Это достигается за счет высокой растворимости.

Нитрат калия

Большое значение имеет получение нитрата калия (KNO3). Эта белая соль, называемая индийской селитрой, практически не токсична для живых организмов. Применяется и в мирных целях в качестве удобрения, и в военных как компонент взрывчатых и горючих веществ.

Кроме того, получение нитрата калия нужно для обесцвечивания и улучшения прочностных характеристик хрустальных стекол, что широко используется в вакуумной электропромышленности и оптическом стекловарении. В металлургии полезны ее окислительные свойства в отношении никелевых и иных руд.

А в пищевой промышленности соль выступает в качестве консерванта.

Для получения раствора нитрата калия можно воспользоваться следующими веществами:

  • надпероксидом металла при добавлении к нему оксида азота (IV) и нагревании до 70 градусов Цельсия;
  • гидроксидом и разбавленной азотной кислотой;
  • гидроксидом в холодном состоянии и смесью оксидов азота (II) и (IV);
  • горячим гидроксидом, оксидом азота (IV) и кислородом;
  • горячим разбавленным нитритом калия и кислородом (реакция требует времени);
  • нитритом калия и горячей перекисью водорода в разбавленной серной кислоте в качестве катализатора (кислоту можно заменить бромом, но он вступит в реакцию с образованием бромоводорода).

Полученное соединение плавится без разложения, устойчиво на воздухе, растворяется в воде без гидролиза, обладает сильными окислительными свойствами, восстанавливается только атомным водородом.

Соль, известная еще с XIV века, получила название сульфата калия (K2SO4) лишь в XVII. Она присутствует в водах соленых озер и месторождениях неметаллических минеральных ресурсов, но возможно получение сульфата калия в процессе синтеза следующих веществ:

  • надпероксида калия и серы при 130-140 градусах Цельсия (вместо серы можно использовать ее оксид (IV), тогда будет достаточно температуры в 100 градусов);
  • гидроксида калия и разбавленной серной кислоты;
  • гидросульфата калия (разложением при 240 градусах);
  • гидросульфата калия и концентрированного каустического поташа или хлорида этого же металла;
  • хлорида калия и концентрированной серной кислоты при кипячении;
  • сульфида калия и кислорода при температуре выше 500 градусов;
  • разложением дисульфата калия при температуре выше 440 градусов и использовании оксида серы (IV) и кислорода в качестве катализаторов.

Другое название получаемого вещества – арканит. Оно имеет белый цвет, устойчиво к температурному воздействию, но легко растворяется в воде без кристаллогидратов. Для него характерно участие в обменных реакциях, восстановление водородом и углеродом.

На практике оно активно используется в сельском хозяйстве как бесхлорное удобрение для бедных калием почв. Особенно важен арканит для культур, чувствительных к хлору или потребляющих много серы.

Урожай, выращенный с его применением, содержит большее количество сахара и витаминов, чем тот, который не удобрялся.

Также удобрение используют для цветов, выращиваемых и на открытом воздухе, и в тепличных условиях.

Другое применение арканита – компонент при производстве стекла, квасцов, металлургических плавней. Он выступает и в качестве пищевой добавки, но само по себе вещество сложно назвать безопасным: оно раздражает глаза, кожу, желудочно-кишечный тракт, дыхательные пути и приводит к отравлению при длительном контакте с различными частями тела и организма.

Карбонат калия

Поташ или углекислый калий (К2СО3) был известен еще в древности и сохранял важное промышленное значение вплоть до ХХ века. Получение карбоната калия происходило путем выщелачивания из растительной золы и последующей очисткой продукта. В основном производство локализовалось в лесистой местности Европы, России и Северной Америки.

Сейчас известно больше реакций, в результате которых получается карбонат. Обычно используются следующие вещества:

  • надпероксид калия и графит при небольшом нагревании до 30 градусов (вместо графита может быть использован угарный газ с нагреванием до 50 градусов);
  • концентрированный гидроксид калия и углекислый газ;
  • разложение гидрокарбоната калия при температуре от 100 до 400 градусов;
  • гидрокарбонат и концентрированный гидроксид калия;
  • сульфат калия, гидроксид кальция и угарный газ при температуре 200 градусов и под давлением, с последующим синтезом получившегося продукта К(НСОО) с кислородом при 700 градусах.

Получаемое белое вещество плавится без разложения, в воде сильно гидролизуется по аниону, создает сильнощелочную среду, реагирует с кислотами, неметаллами и их оксидами, а также вступает в реакции обмена.

Вещество малотоксичное и используется для производства жидкого мыла, пигментов, стекла, соединений калия. Применяется в крашении, выращивании сельскохозяйственных культур, проявлении фотографий. Кроме того, является популярной добавкой, уменьшающей температуру замерзания бетона, поглотителем сероводорода, обезвоживающим агентом, пищевой добавкой.

Перманганат калия

Красно-фиолетовая, почти черная марганцовка известна всем, так как ее можно увидеть практически в каждом доме. Хотя в последнее время существуют небольшие ограничения на покупку вещества из-за того, что его признали прекурсором.

Получение перманганата калия (KMnO4) возможно несколькими способами, например, взаимодействием сульфата марганца (II) с водой и кислородом из дитионата калия.

По прошествии некоторого времени при наличии нитрата серебра в качестве катализатора из этой смеси получится перманганат и сульфат калия, а также серная кислота.

Еще больше способов предполагает использование манганата калия, к нему можно добавлять следующие вещества:

  • воду (реакция требует затрат времени);
  • разбавленную соляную кислоту;
  • углекислый газ;
  • хлор.

Кроме того, манганат можно подвергать электролизу с образованием перманганата на аноде (на катоде будет водород).

Применение у получившегося вещества широкое. Благодаря окисляющей способности оно обеспечивает антисептическое действие. В медицине оно применяется для полоскания горла при воспалительных заболеваниях его слизистой, промывания ран, обработки ожогов и инфицированных ран, лечения язв, а также как рвотное средство при отравлениях алкалоидами.

Противопоказанием является гиперчувствительность, но передозировка может привести к летальному исходу даже у здорового человека, смертельная доза для среднего человека составляет всего 20-30 г.

При использовании перманганата нужно соблюдать меры предосторожности, так, вещество воспламеняется при смешивании с органическими и легковоспламеняющимися соединениями, активными металлами и неметаллами. При дополнительном нагревании возможен взрыв.

Ваш педагог
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: