Второе начало термодинамики

Второй закон термодинамики

Второе начало термодинамики

Согласно закону сохранения энергии в случае определенных процессов, объем используемой энергии остается неизменным. Для того, чтобы объяснить как энергия может превращаться можно обратиться к понятию второй закон термодинамики.

Данный закон подтверждает необратимость некоторых явлений в природе и указывает траекторию энергетических изменений внутри определенных процессов. Закон был сформулирован на основе наблюдений за происходящее в природе, что позволило понять сущность и характер протекания определенных явлений.

Все законы физики основаны на опытах и наблюдениях и позволили формулировать определенные заявления на основе происходящего в природе.

В качестве основы для второго закона термодинамики стали необратимые и непроизвольные процессы, которые происходят исключительно в одно направление и/или без постороннего внешнего воздействия.

Классические примеры таких процессов это старение, смерть.

Без того чтобы обобщать, можно обратиться к более простым процессам: духи распространяются очень быстро при распылении, а обратному соединению они не подаются; также легко превратить яйца в омлет, так что обратно в скорлупу их невозможно вернуть.

Закон работает в изолированных системах, но также может восприниматься как рабочим в случае систем, у которых есть возможность получить тепло извне. В подобных системах энтропия будет расти даже быстрее.

Показатель энтропии указывает на систему с характером неупорядоченности, то есть сама энтропия и есть мера беспорядка. Высокий показатель энтропии это высокий уровень хаотичности движения частиц внутри системы.

Классический пример этого состояния это превращение льда в воду и его невозможность стать снова льдом самостоятельно. В случае превращения воды в лед должно происходить понижение уровня энтропии.

Говоря о том, что такое термодинамика второй закон необходимо вспомнить, что собой представляет первый закон термодинамики. Он олицетворение всех известных процессов в природе и соблюдается с 100% точностью. Все что может противоречить этому закону, в природе не существует.

Данный закон ничего не отрицает, но и не утверждает, а в качестве вспомогательного элемента для разъяснения определенных процессов вступает второй закон термодинамики, всем известный в разных формулировках. Невзирая на то, что закон простой, он часто интерпретируется некорректно.

Второй закон термодинамики появился, как необходимость определить направление физических процессов определенные первым законом. В первую очередь необходимо отметить, что разные виды энергии обладают различной способностью перевоплощаться в другую энергию. Существует ограничение, которое не позволяет внутренней энергии стать механической энергии и это разъясняется законами термодинамики.

Второй закон термодинамики в различных формулировках

Существует несколько формулировок данного закона, которые объясняют одну правду различными способами. Первый кто сформулировал его это Р. Клаузиус, после последовали формулировки Томсона, Больцмана, Кельвина. Наличие различных интерпретации данного закона позволяет его понять лучше. Поэтому будет не лишним ознакомиться с каждым из них.

1. Переход тепла от тела с невысокой температурой к другому телу с более высоким уровнем температуры невозможен. (Клаузиус)

2. Любой процесс является невозможным, если для его осуществления должно использоваться тепло взятое от постороннего тела. (Томсон)
3. Состояние энтропии не может стать меньше в полностью закрытых системах, которые не получают никакую внешнюю энергию. (Больцман)

4. Периодические процессы, происходящие исключительно за счет теплоты единого источника являются невозможными. Создание вечного теплового двигателя, который совершал бы механические процессы за счет потери тепла любого тела, является невозможным. (Кельвин).

Согласно всем формулировкам можно условно определить, что процессы можно называть необратимыми, если механическая энергия проходит путь модификации во внутренней энергии при наличии процесса трения.

Отсутствие параметра трение позволило бы в ином случае получать обратное протекание процессов.

Обратные процессы можно считать абстрактными с учетом того, что протекают они, как правило, в присутствии реакции теплообмена и трения.

Второй закон термодинамики формулы

Существуют определенные уравнения, которые помогают рассматривать второй закон термодинамики согласно более конкретным данным. Основное уравнение это уравнение Больцмана, которое позволяет вычислять параметр энтропия.

S = Q/ T

С целью понять, что собой представляет параметр энтропия можно рассмотреть пример с системой, в которой два тела с не одинаковой температурой будут обмениваться теплом, пока температура обоих тел не сравнится.

Тепло будет передаваться исключительно от тела с температурой выше к более холодному. Тело, которое отдает тепло, получает пониженный уровень энтропии, только не по тем параметрам, по которым увеличиться энтропия тела, получившее это тепло.

Энтропия обеих тел по итогам после процесса передачи тепла будет выше для всей системы. Это указывает, что данная величина стремиться к энному максимуму для всех закрытых систем.

Также неопровержимо заявление относительно того, что действие по передаче тепла будет продолжать происходить самопроизвольно, пока будут существовать перепады температуры.

Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

Источник: https://reshit.ru/vtoroj-zakon-termodinamiki

Необратимость тепловых процессов. Второй закон термодинамики. Понятие энтропии

Второе начало термодинамики
Определение 1

Первый закон термодинамики – закон сохранения тепловых процессов, устанавливающий связь между количеством теплоты Q и изменением ∆U внутренней энергии и работой А, совершенной над внешними телами:

Q=∆U+A.

Исходя из закона, энергия не может быть создана или уничтожена: производится процесс передачи от одной системы к другой, принимая другую форму. Еще не было получено процессов, нарушающих первый закон термодинамики. Рисунок 3.12.1 показывает устройства, противоречащие первому закону.

Рисунок 3.12.1. Циклически работающие тепловые машины, запрещаемые первым законом термодинамики: 1 – вечный двигатель 1 рода, совершающий работу без потребления энергии извне; 2 – тепловая машина с коэффициентом полезного действия η>1.

Обратимый и необратимый процессы

Определение 2

Первый закон термодинамики не устанавливает направления тепловых процессов. Опыты показывают, что большинство тепловых процессов протекают в одном направлении. Их называют необратимыми.

Пример 1

Если имеется тепловой контакт двух тел с разными температурами, тогда направление теплового потока направляется от теплого к холодному. Самопроизвольной передачи тепла от тела с низкой температуры к телу с высокой не наблюдается. Отсюда следует, что теплообмен с конечной разностью температур считается необратимым.

Определение 3

Обратимым процессом называется переход системы из одного равновесного расстояния в другое, которые возможно проводить в обратном направлении в той же последовательности промежуточных равновесных состояний. Она вместе с окружающими телами возвращаются к исходному состоянию.

Если система находится в состоянии равновесия во время процесса, она называется квазистатической.

Когда рабочее тело тепловой машины контактирует с тепловым резервуаром, температура которого неизменна во время всего процесса, то только изотермический квазистатический процесс считается обратимым, так как протекает с бесконечно малой разницей температур рабочего резервуара. Если имеется два резервуара, причем с разными температурами, тогда обратимым путем можно провести процессы на двух изотермических участках.

Так как адиабатический процесс проводится в обоих направлениях (сжатие и расширение), наличие кругового процесса с двумя изотермами и двумя адиабатами (цикл Карно) говорит о том, что это и есть единственный обратимый круговой процесс, где рабочее тело контактируется с двумя тепловыми резервуарами. Остальные при наличии 2 тепловых резервуаров считаются необратимыми.

Превращение механической работы во внутреннюю энергию считаются необратимыми при наличии силы трения, диффузии в газах и жидкостях, а процесс перемешивания по причине начальной разности давлений и так далее. Все реальные процессы считаются необратимыми, даже если значения будут максимально приближены к обратимым. Обратимые рассматриваются как пример реальных процессов.

Первый закон термодинамики не различает их. Правило требует от термодинамического процесса определенного энергетического баланса, но не говорит о том, возможен ли он. Установка направления прохождения процесса определяется вторым законом термодинамики. Его формулировка может звучать как запрет на определенные термодинамические процессы.

Второй закон был трактован У. Кельвином в 1851.

Определение 4

В циклически действующей тепловой машине невозможно прохождение процесса, единственным результатом которого было бы преобразование в механическую работу всего количества теплоты, полученного от единственного теплового резервуара.

Предположительно, машина с такими процессами могла бы получить название вечного двигателя второго рода.

Пример 2

При земных условиях могла бы быть отбита энергия Мирового океана и полностью превратилась бы в ее работу. Масса воды Мирового океана – 1021 кг.

Для его охлаждения хотя бы на 1 градус потребуется огромное количество энергии ≈1024 Дж, которое сравнимо с сжиганием 1017 кг угля. Вырабатываемая энергия на Земле за год в 104 раз меньше.

Отсюда и вывод о том, что вечный двигатель второго рода мало вероятен, как и двигатель первого, потому как оба они недопустимы, исходя из первого закона термодинамики.

Второй закон термодинамики

Формулировка 2-го закона термодинамики была дана физиком Р. Клаузиусом.

Определение 5

Невозможно прохождение процесса, единственным результатом которого была бы передача энергии при помощи теплообмена от тела с низкой температуры к телу с более высокой.

Рисунок 3.12.2 объясняет процессы, которые запрещены вторым законом, но разрешены согласно первому. Они соответствуют трактовкам второго закона термодинамики.

Рисунок 3.12.2. Процессы, не противоречащие первому закону термодинамики, но запрещаемые вторым законом: 1 – вечный двигатель второго рода; 2 – самопроизвольный переход тепла от холодного тела к более теплому (идеальная холодильная машина).

Формулировки обоих законов считаются эквивалентными.

Пример 3

Когда тело без помощи внешних сил переходит при теплообмене от холодного к горячему, то возникает мысль о возможности создания вечного двигателя второго рода. Если такая машина получит количество теплоты Q1 от нагревателя и отдаст холодильнику Q2, тогда совершается работа A=Q1-Q2.

Если бы Q2 самопроизвольно перешло к нагревателю, то конечный результат тепловой машины и идеальной холодильной машины выглядело бы таким образом Q1-Q2. Причем сам переход происходил бы без изменений холодильника.

Отсюда вывод – комбинация тепловой машины и идеальной холодильной машины равноценна двигателю второго рода.

Прослеживается связь между вторым законом термодинамики и необратимостью реальных тепловых процессов. Энергия теплового движения молекул отлична от механической, электрической и так далее.

Она способна превратиться в другой вид энергии только частично.

Поэтому при наличии энергии теплового движения молекул любой процесс считается необратимым, так как полностью в обратном направлении он не осуществим.

Свойство, относящееся к необратимым процессам, говорит о том, что они проходят в термодинамически неравновесной системе, а результат получается в виде замкнутой системы, приближающейся к состоянию термодинамического равновесия.

Опиши задание

Теоремы Карно

Имеются теоремы Карно, которые могут быть доказаны, исходя из второго закона термодинамики.

Теорема 1

КПД тепловой машины, работающей при данных значениях температур нагревателя холодильника, не может иметь значение больше, чем КПД действия машины, работающей согласно обратимому циклу Карно с теми же значениями температур нагревателя и холодильника.

Теорема 2

КПД действия тепловой машины, работающей по циклу Карно, не зависит от рода рабочего тела, а только от температур нагревателя и холодильника.

Отсюда следует, что КПД действия машины с циклом Карно считается максимальным.

η=1-Q2Q1≤ηmax=ηКарню=1-T2T1.

Знак равенства данной записи говорит об обратимости процесса. Если машина работает по циклу Карно, тогда:

Q2Q1=T2T1 или Q2T2=Q1T1.

Знаки Q1 и Q2 всегда отличаются независимо от направления цикла. Поэтому получаем:

Q1T1+Q2T2=0.

Рисунок 3.12.3 говорит о том, что данное соотношение обобщается и представляется в виде последовательности малых изометрических и адиабатических участков.

Рисунок 3.12.3. Произвольный обратимый цикл как последовательность малых изотермических и адиабатических участков.

Полный обход замкнутого обратимого цикла имеет вид:

∑∆QiTi=0 (обратимый цикл).

Откуда ∆Qi=∆Q1i+∆Q2i – количество теплоты, полученное рабочим телом на двух изотермических участках с температурой Ti. Чтобы данный цикл провести наоборот, нужно рабочее тело сконтактировать со многими тепловыми резервуарами с Ti.

Энтропия

Определение 6

Отношение QiTi получило название приведенного тепла. Формула показывает, что полное приведенное тепло на любом обратимом цикле равно нулю. Благодаря ей вводится еще одно понятие – энтропия, обозначаемая S. Ее открыл Р. Клаузиус в 1865 году.

При переходе из одного равновесного состояние в другое изменяется и ее энтропия. Разность энтропий двух состояний равняется приведенному теплу, полученному системой во время обратного перехода состояния.

∆S=S2-S1=∑(1)(2)∆QiобрT.

Если рассматривается адиабатический процесс ∆Qi=0, тогда энтропия S не изменяется.

Изменение энтропии ∆S во время перехода в другое состояние фиксируется как формула:

∆S=∫(1)(2)dQобрT.

Определение энтропии достаточно точное. Разность ∆S двух состояний системы подразумевает физический смысл. Если имеется необратимый переход, а необходимо найти энтропию, тогда нужно придумать обратимый процесс, который свяжет начальное и конечное состояние. После этого перейти к нахождению приведенного тепла, полученного системой.

Рисунок 3.12.4 Модель энтропии и фазовых переходов.

Рисунок 3.12.5 показывает необратимый процесс расширения шага с отсутствием теплообмена. Равновесными считаются начальное и конечное значение, изображаемые на диаграмме p, V.

Точки a и b соответствуют состояниям и располагаются на одной изотерме. Чтобы найти ∆S, следует перейти к рассмотрению обратимого изотермического перехода из a в b.

При изопроцессе газ получает определенное количество теплоты окружающих тел Q>0, тогда при необратимом расширении энтропия возрастет до ∆S>0.

Рисунок 3.12.5. Расширение газа в «пустоту». Изменение энтропии ∆S=QT=AT>0 где A=Q – работа газа при обратимом изотермическом расширении.

Пример 4

Еще одним примером необратимого процесса считается теплообмен при конечной разности температур. Рисунок 3.12.6 и показывает два тела, заключенные в адиабатическую оболочку, где начальные температуры обозначаются как T1 и T20.

Рисунок 3.12.6. Теплообмен при конечной разности температур: a – начальное состояние; b – конечное состояние системы. Изменение энтропии ΔS>0.

Все самопроизвольно протекающие процессы в изолированных термодинамических процессах характеризуются ростом энтропии.

Определение 7

Обратимые процессы имеют постоянную энтропию ∆S≥0. Соотношение называют законом возрастания энтропии.

При любых процессах, протекающих в термодинамических изолированных системах, энтропия либо не меняется, либо возрастает.

Определение 8

Наличие энтропии говорит о самопроизвольно протекающем процессе, а ее рост – приближение всей системы к термодинамическому равновесию, где S принимает максимальное значение. Возрастание энтропии можно трактовать как формулировку второго закона термодинамики.

В 1878 году Л. Больцман дал вероятностное определение понятию энтропии, так как было предложено рассматривать ее в качестве меры статистического беспорядка замкнутой термодинамической системы. Все самопроизвольно протекающие процессы в таких системах приближают ее к равновесному состоянию, так как сопровождаются ростом энтропии, и направляют в сторону увеличения вероятности состояния.

Если состояние макроскопической системы содержит большое число частиц, то его реализация может предусматривать несколько способов.

Определение 9

Термодинамическая вероятность W системы – это количество способов, которыми реализуется данное состояние макроскопической системы, макросостояний, осуществляющих его.

Из определения имеем, что W≫1.

Определение 10

При наличии 1 моль газа в емкости существует число N способов размещения молекулы по двум половинам емкости: N=2NА, где NА – число Авогадро. Каждое из них – это микросостояние.

Одно из них соответствует случаю с молекулами, собранными в одной половине сосуда. Вероятность такого события приравнивается к нулю. Большое количество состояний соответствует такому, где молекулы распределяются равномерно по всей площади емкости.

Тогда равновесное состояние является наиболее вероятным.

Определение 11

Равновесное состояние считается состоянием наибольшего беспорядка в термодинамической системе с максимальной энтропией.

Исходя из трактовок Больцмана, энтропия S и термодинамическая вероятность W связаны:

S=k·ln W, где k=1,38·10-23 Дж/К является постоянная Больцмана. Отсюда следует, что определение энтропии определяется логарифмом числа микросостояний. Именно они способствуют реализации данного макросостояния. Тогда энтропия может быть рассмотрена в качестве меры вероятности состояния термодинамической системы.

Определение 12

Вероятностная трактовка второго закона термодинамики допускает самопроизвольное отклонение системы от состояния термодинамического равновесия. Их называют флуктуациями.

В системах с большим числом частиц отклонения от состояния равновесия имеют достаточно малую вероятность на существование.

Источник: https://Zaochnik.com/spravochnik/fizika/termodinamika/neobratimost-teplovyh-protsessov/

Формулировки второго закона термодинамики

Если в замкнутой системе происходит процесс, то энтропия этой системы не убывает. В виде формулы второй закон термодинамики записывают как:

\[\int{(1)}_{(2)\ L}{\dfrac{\delta Q}{T}=\int{(1)}_{(2)}{dS}}=S_1-S_2\le 0 \qquad (1),\]

где S – энтропия; L – путь по которому система переходит из одного состояния в другое.

В данной формулировке второго начала термодинамики следует обратить внимание на то, что рассматриваемая система должна быть замкнутой. В незамкнутой системе энтропия может вести себя как угодно (и убывать, и возрастать, и оставаться постоянной). Заметим, что энтропия не изменяется в замкнутой системе при обратимых процессах.

Рост энтропии в замкнутой системе при необратимых процессах — это переход термодинамической системы из состояний с меньшей вероятностью в состояния с большей вероятностью. Известная формула Больцмана дает статистическое толкование второго закона термодинамики:

\[S=kln\ w\ \qquad (2),\]

где k – постоянная Больцмана; w – термодинамическая вероятность (количество способов при помощи которых, может реализовываться рассматриваемое макросостояние системы). Так, второй закон термодинамики является статистическим законом, который связан с описанием закономерностей теплового (хаотического) движения молекул, которые составляют термодинамическую систему.

Эффективность теплового двигателя

Эффективность теплового двигателя, действующего между двумя энергетическими уровнями , определена в пересчете на абсолютные температуры

\[ \eta = \dfrac{T_h – T_c}{T_h} = \frac{1 – T_c }{T_h} \]

где: η – эффективность, Th – верхняя граница температуры (K), Tc – нижняя граница температуры (K)

Для того, чтобы достичь максимальной эффективности Tc должна быть на столько низкой, на сколько это возможно. Чтобы эффект был 100% -м, Tc должна равнятся 0 по шкале Kельвина. Практически это невозможно, поэтому эффективность всегда меньше 1 (менее 100%).

  • Изменение энтропии > 0 Необратимый процесс
  • Изменение энтропии = 0 Двусторонний процесс (обратимый)
  • Изменение энтропии < 0 Невозможный процесс (неосуществимый)

Энтропия определяет относительную способность одной системы влиять на другую. Когда энергия двигается к нижнему энергетическому уровню, где уменьшается возможность влияния на окружающую среду, энтропия увеличивается.

Определение энтропии

Энтропия определяется как :

\[ S = \dfrac{H}{T} \]

где: S = энтропия (кДж/кг*К), H – энтальпия> (кДж/кг), T = абсолютная температура (K)

Изменение энтропии системы вызвано изменением содержания темпла в ней. Изменение энтропии равно изменению темпла системы деленной на среднюю абсолютную температуру ( Ta):

\[ dS = \frac{dH}{T_a} \]

Сумма значений (H / T) для каждого полного цикла Карно равна 0. Это происходит из-за того, что каждому положительному H противостоит отрицательное значение H.

Тепловой цикл Карно

Цикл Карно— идеальный термодинамический цикл.

В тепловом двигателе, газ (реверсивно) нагревается (reversibly heated), а затем охлаждается. Модель цика следующая:

Положение 1 — (изотермическое расширение) → Положение 2 — (адиабатическое расширение) → Положение 3 –(изотермическое сжатие) → Положение 4 –(адиабатическое сжатие) → Положение 1

Положение 1 – Положение 2: Изотермическое расширение Изотермическое расширение. В начале процесса рабочее тело имеет температуру Th , то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты QH. При этом объём рабочего тела увеличивается. QH=∫Tds=Th (S2-S1) =Th ΔS

Положение 2 – Положение 3: Адиабатическое расширение Адиабатическое (изоэнтропическое) расширение. Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом его температура уменьшается до температуры холодильника.

Положение 3 – Положение 4: Изотермическое сжатие Изотермическое сжатие. Рабочее тело, имеющее к тому времени температуру Tc, приводится в контакт с холодильником и начинает изотермически сжиматься, отдавая холодильнику количество теплоты Qc. Qc=Tc(S2-S1)=Tc ΔS

Положение 4 – Положение 1: Адиабатическое сжатие Адиабатическое (изоэнтропическое) сжатие. Рабочее тело отсоединяется от холодильника и сжимается без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя.

При изотермических процессах температура остаётся постоянной, при адиабатических отсутствует теплообмен, а значит, сохраняется энтропия.

Поэтому цикл Карно удобно представить в координатах T и S (температура и энтропия).

Законы термодинамики были определены эмперическим путем (эксперементально). Второй закон термодинамики – это обощение экспериментов, связанных с энтропией. Известно, что dS системы плюс dS окружающей среды равно или больше 0.

Энтропия адиабатически изолированной системы не меняется!

Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!

Источник: https://calcsbox.com/post/vtoroj-zakon-termodinamiki.html

Второе начало термодинамики

Второе начало термодинамики

Как говорилось в разделе, посвященном тепловому двигателю, эффективность тепловой машины характеризуют с помощью коэффициента полезного действия (КПД), который определен как:

или:

где $Q_n$ – количество теплоты, переданное рабочему телу от нагревателя, ${Q'}_{ch}$ – количество теплоты, переданное газом холодильнику. Возможность создания такой тепловой машины, КПД которой равен 1, не противоречит первому началу термодинамики.

Такая машина могла бы превращать все количество теплоты, которое получает от нагревателя в работу. По своему значению она не уступала бы вечному двигателю первого рода, так как с ее помощью можно было бы производить работу за счет неисчерпаемой внутренней энергии, например, мирового океана.

Такую машину Вильгельм Освальд назвал вечным двигателем второго рода. Но уже Сади Карно понял, что такая машина принципиально невозможна. Опытные факты говорят о том, что построение вечного двигателя второго рода невозможно и это возведено в постулат. Это и называют вторым началом термодинамики.

Второе начало термодинамики – результат обобщения опытных фактов. Существует несколько формулировок второго начала термодинамики.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость

Формулировка Вильяма Томсона

Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара. Под тепловым резервуаром понимают систему тел в состоянии термодинамического равновесия, обладающую запасом внутренней энергии.

Сам резервуар работы не совершает, а только передает теплоту. На первый взгляд может показаться, что, например, изотермический процесс противоречит данной формулировке. При $T=const$ в соответствии с первым началом термодинамики, все тепло преданное системе идет на выполнение данной системой работы.

Однако в формулировке существенно указание на то, что процесс круговой.

Формулировка Планка

Нельзя создать построить периодически действующую машину, единственным результатом которой было бы поднятие груза за счет охлаждения теплового резервуара. Опять таки мы видим указание на периодичность, которое крайне важно. Формулировка Планка лишь по форме отличается от формулировки Томсона.

Клаузиус дал принципиально иную формулировку. Теплота не может самопроизвольно переходить от менее нагретого тела к более нагретому. Под теплотой здесь следует понимать внутреннюю энергию.

Имеется в виду не только передача тепла при тепловом контакте, но и передача любого рода. Постулат Клаузиуса не утверждает, что невозможно передать тепло от тела с меньшей температурой к более нагретому в принципе.

Это невозможно при условии, что во всех остальных телах никаких изменений не происходит.

И еще одна формулировка второго начала термодинамики касается энтропии. Допустим, что система замкнута и изолирована. Она переходит из состояния (1) в состояние (2) (рис 1) путь $L_1$. Процесс возвращения системы из 2 в 1 существует и он обратим путь $L_2$.

Рис. 1

Как видно из рисунка (рис.1) образовался цикл, к которому можно применить неравенство Клаузиуса (см. соответствующий раздел):

Как было сказано, что в процессе 1-2 система была изолированной, следовательно, $\delta Q\ $в интегралу по пути $L_1$ равен нулю:

В обратимом переходе 2-1 можно записать:

Следовательно, неравенство (3) запишем:

Или

Неравенство (7) означает, что при переходе замкнутой системы из состояния с энтропией $S_1$ в состояние с энтропией $S_2$ энтропия или увеличивается, или остается постоянной. Выражение (7) и есть очередная формулировка второго начала термодинамики.

В процессах, происходящих в изолированных системах, энтропия не убывает. В неизолированных системах энтропия может и убывать и возрастать, и не изменяться. Важно, что энтропия в замкнутых системах не изменяется только в обратимых процессах. В необратимых процессах она растет.

Рост энтропии означает приближение системы к состоянию термодинамического равновесия.

Таким образом, первое начало термодинамики говорит о количественных отношениях между величинами, которые характеризуют систему при различных изменениях, но не говорит о направлении этих изменений. Второе начало термодинамики указывает на направление, в которых эти изменения должны произойти.

Пример 1

Задание: Найдите КПД цикла, который представлен на рисунке 2 (рис.2). Отношение максимального давления к минимальному в цикле составляет n. Рабочее тело — идеальный газ с показателем адиабаты $

Источник: https://spravochnick.ru/fizika/termodinamika/vtoroe_nachalo_termodinamiki/

Постулат Клаузиуса

Рудольф Юлиус Эммануэль Клаузиус

Второй закон термодинамики, как и первый, также выведен опытным путём. Автором первой формулировки второго закона термодинамики считается немецкий физик, механик и математик Рудольф Клаузиус.

«Теплота сама собой не может переходить от тела холодного к телу горячему». Это утверждение, которое Клазиус назвал «тепловой аксиомой», было сформулировано в 1850 г.

в работе «О движущей силе теплоты и о законах, которые можно отсюда получить для теории теплоты». «Само собой теплота передаётся лишь от тела с более высокой температурой к телу с меньшей температурой. В обратном направлении самопроизвольная передача теплоты невозможна».

Таков смысл постулата Клаузиуса, определяющего суть второго закона термодинамики.

Обратимые и необратимые процессы

Первый закон термодинамики показывает количественную связь между теплотой, полученной системой, изменением её внутренней энергии и работой, произведённой системой над внешними телами. Но он не рассматривает направление передачи теплоты.

И можно предположить, что теплота может передаваться как от горячего тела к холодному, так и наоборот. Между тем, в действительности это не так. Если два тела находятся в контакте, то теплота всегда передаётся от более нагретого тела к менее нагретому.

Причём этот процесс происходит сам по себе. При этом во внешних телах, окружающих контактирующие тела, никаких изменений не возникает. Такой процесс, который происходит без совершения работы извне (без вмешательства внешних сил), называется самопроизвольным.

Он может быть обратимым и необратимым.

Самопроизвольно остывая, горячее тело передаёт свою теплоту окружающим его более холодным телам. И никогда само собой холодное тело не станет горячим.

Термодинамическая система в этом случае не может возвратиться в первоначальное состояние. Такой процесс называется необратимым. Необратимые процессы протекают только в одном направлении.

Практически все самопроизвольные процессы в природе необратимы, как необратимо время.

Обратимымназывается термодинамический процесс, при котором система переходит из одного состояния в другое, но может вернуться в исходное состояние, пройдя в обратной последовательности через промежуточные равновесные состояния. При этом все параметры системы восстанавливаются до первоначального состояния.

Обратимые процессы дают наибольшую работу. Однако в реальности их нельзя осуществить, к ним можно только приблизиться, так как протекают они бесконечно медленно. На практике такой процесс состоит из непрерывных последовательных состояний равновесия и называется квазистатическим.

Все квазистатические процессы являются обратимыми.

Постулат Томсона (Кельвина)

Уильм Томсон, лорд Кельвин

Важнейшая задача термодинамики – получение с помощью тепла наибольшего количества работы. Работа легко превращается в теплоту полностью безо всякой компенсации, например, с помощью трения. Но обратный процесс превращения теплоты в работу происходит не полностью и невозможен без получения дополнительной энергии извне.

Нужно сказать, что передача теплоты от более холодного тела к более тёплому возможна. Такой процесс происходит, например, в нашем домашнем холодильнике. Но он не может быть самопроизвольным.

Для того чтобы он протекал, необходимо наличие компрессора, который будет такой воздух перегонять. То есть, для обратного процесса (охлаждения) требуется подвод энергии извне.

«Невозможен переход теплоты от тела с более низкой температурой без компенсации».

В 1851 г. другую формулировку второго закона дал британский физик и механик Уильям Томсон, лорд Кельвин. Постулат Томсона (Кельвина) гласит: «Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара».

То есть, нельзя создать циклически работающий двигатель, в результате действия которого производилась бы положительная работа за счет его взаимодействия лишь с одним источником теплоты. Ведь если бы это было возможно, тепловой двигатель мог бы работать, используя, например, энергию Мирового океана и полностью превращая её в механическую работу.

В результате этого происходило бы охлаждение океана за счёт уменьшения энергии. Но как только его температура оказалась бы ниже температуры окружающей среды, должен был бы происходить процесс самопроизвольной передачи тепла от более холодного тела к более горячему. А такой процесс невозможен.

Следовательно, для работы теплового двигателя необходимо хотя бы два источника теплоты, имеющих разную температуру.

Вечный двигатель второго рода

В тепловых двигателях теплота превращается в полезную работу только при переходе от нагретого тела к холодному. Чтобы такой двигатель функционировал, в нём создаётся разность температур между теплоотдатчиком (нагревателем) и теплоприёмником (холодильником). Нагреватель передаёт теплоту рабочему телу (например, газу).

Рабочее тело расширяется и совершает работу. При этом не вся теплота превращается в работу. Часть её передаётся холодильнику, а часть, например, просто уходит в атмосферу.

Затем, чтобы вернуть параметры рабочего тела к первоначальным значениям и начать цикл сначала, рабочее тело требуется нагреть, то есть от холодильника необходимо отнять теплоту и передать её нагревателю. Это означает, что нужно передать теплоту от холодного тела к более тёплому.

И если бы этот процесс можно было осуществить без подвода энергии извне, мы получили бы вечный двигатель второго рода. Но так как, согласно второму закону термодинамики, сделать это невозможно, то невозможно и создать вечный двигатель второго рода, который полностью превращал бы теплоту в работу.

Эквивалентные формулировки второго закона термодинамики:

  1. Невозможен процесс, единственным результатом которого является превращение в работу всего количества теплоты, полученного системой.
  2. Невозможно создать вечный двигатель второго рода.

Принцип Карно

Николя Леонар Сади Карно

Но если невозможно создать вечный двигатель, то можно организовать цикл работы теплового двигателя таким образом, чтобы КПД (коэффициент полезного действия) был максимальным.

В 1824 г.

, задолго до того как Клаузиус и Томсон сформулировали свои постулаты, давшие определения второго закона термодинамики, французский физик и математик Николя Леонар Сади Карно опубликовал свою работу «Размышления о движущей силе огня и о машинах, способных развивать эту силу». В термодинамике её считают основополагающей. Учёный сделал анализ существовавших в то время паровых машин, КПД которых был всего лишь 2%, и описáл работу идеальной тепловой машины.

В водяном двигателе вода совершает работу, падая с высоту вниз. По аналогии Карно предположил, что и теплота может совершать работу, переходя от горячего тела к более холодному.

Это означает, что для того чтобы тепловая машина работала, в ней должно быть 2 источника тепла, имеющих разную температуру. Это утверждение называют принципом Карно.

А цикл работы тепловой машины, созданной учёным, получил название цикла Карно.

Карно придумал идеальную тепловую машину, которая могла совершать максимально возможную работу за счёт подводимой к ней теплоты.

Тепловая машина, описанная Карно, состоит из нагревателя, имеющего температуру ТН, рабочего тела и холодильника с температурой ТХ.

Цикл Карно является круговым обратимым процессом и включает в себя 4 стадии – 2 изотермические и 2 адиабатические.

Первая стадия А→Б изотермическая. Она проходит при одинаковой температуре нагревателя и рабочего тела ТН. Во время контакта количество теплоты QH передаётся от нагревателя рабочему телу (газу в цилиндре). Газ изотермически расширяется и совершает механическую работу.

Для того, чтобы процесс был циклическим (непрерывным), газ нужно вернуть к исходным параметрам.

На второй стадии цикла Б→В рабочее тело и нагреватель разъединяются. Газ продолжается расширяться адиабатически, не обмениваясь теплом с окружающей средой. При этом его температура снижается до температуры холодильника ТХ, и он продолжает совершать работу.

На третьей стадии В→Г рабочее тело, имея температуру ТХ, находится в контакте с холодильником. Под действием внешней силы оно изотермически сжимается и отдаёт теплоту величиной холодильнику. Над ним совершается работа.

На четвёртой стадии Г→А рабочее тело разъединятся с холодильником. Под действием внешней силы оно адиабатически сжимается. Над ним совершается работа. Его температура становится равной температуре нагревателя ТН.

Рабочее тело возвращается в первоначальное состояние. Круговой процесс заканчивается. Начинается новый цикл.

Коэффициент полезного действия теловой машины, работающей по циклу Карно, равен:

КПД такой машины не зависит от её устройства. Он зависит только от разности температур нагревателя и холодильника. И если температура холодильника равна абсолютному нулю, то КПД будет равен 100%. До сих пор никто не смог придумать ничего лучшего.

К сожалению, на практике такую машину построить невозможно. Реальные обратимые термодинамические процессы могут лишь приближаться к идеальным с той или иной степенью точности. Кроме того, в реальной тепловой машине всегда будут тепловые потери. Поэтому её КПД будет ниже КПД идеального теплового двигателя, работающего по циклу Карно.

На основе цикла Карно построены различные технические устройства.

Если цикл Карно провести наоборот, то получится холодильная машина. Ведь рабочее тело сначала заберёт тепло от холодильника, затем превратит в тепло работу, затраченную на создание цикла, а потом отдаст это тепло нагревателю. По такому принципу работают холодильники.

Обратный цикл Карно лежит также в основе тепловых насосов. Такие насосы переносят энергию от источников с низкой температурой к потребителю с более высокой температурой. Но, в отличие от холодильника, в котором отбираемая теплота выбрасывается в окружающую среду, в тепловом насосе она передаётся потребителю.

Источник: http://ency.info/materiya-i-dvigenie/termodinamika/373-vtoroj-zakon-termodinamiki

Ваш педагог
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: